Combinatorics Exam

1. Let G_{n} be the graph whose vertex set is the set of all permutations of $[n]$ (in one line notation), with two vertices adjacent if they differ by switching two consecutive entries in the permutation. What is the chromatic number of G_{n} (with proof).
2. Let $T=(V, E)$ be a tournament that is not strongly connected. Show there is a partition $V=A \sqcup B$ with A, B non-empty so that every edge between $a \in A$ and $b \in B$ is from a to b.
3. Recall the permutation $\pi=\pi_{1} \ldots \pi_{n}$ contains the permutation $\sigma=\sigma_{1} \ldots \sigma_{k}$ if there is a subset $\left\{i_{1}<\cdots<i_{k}\right\} \subseteq[n]$ so that $\pi_{i_{1}} \ldots \pi_{i_{k}}$ has the same relative order as σ, and that if π avoids σ if it does not contain σ. Let $S_{n}(\sigma)$ be the set of permutations avoiding σ. Prove that $\left|S_{n}(231)\right|$ is the nth Catalan number $C_{n}=\binom{2 n}{n} /(n+1)$.
4. Determine the number of binary strings of length n beginning with 0 , ending with 1 , and such that the number of copies of 00 equals the number of copies of 11 . For example, 00011011 has two copies of each.
5. Show that the number of partitions of n with no part divisible by k is equal to the number of partitions of n with each part appearing at most $k-1$ times.
6. Let P be a finite poset with unique minimal element 0 and Möbius function μ. Let $y \in P$ so that there is only one x covered by y. Show $\mu(0, y)=0$.
7. Let $e_{k}\left(x_{1}, \ldots, x_{n}\right)$ be the elementary symmetric function in n variables and $c(n, k)$ be the (signless) Stirling number of the first kind. Prove that

$$
e_{n+1-k}(1,2, \ldots, n)=c(n+1, k) .
$$

For example, $e_{2}(1,2,3)=1 \cdot 2+1 \cdot 3+2 \cdot 3=11=c(4,2)$.
(Hint: what is $e_{k}\left(x_{1}, \ldots, x_{n}\right)$ in terms of symmetric functions in $n-1$ variables?)
8. Let \mathcal{D}_{n} be the set of permutations of n with no fixed points and \mathcal{F}_{n} be the set of permutations with exactly one fixed point. Show

$$
\left|\mathcal{D}_{n}\right|-\left|\mathcal{F}_{n}\right|=(-1)^{n} .
$$

