Combinatorics Exam

1. Prove that if every vertex of a graph G has degree at least 3 , then G has a cycle with a chord. (A chord is an edge joining two non-adjacent vertices on the cycle.)
2. Let \mathcal{T} be the set of (not rooted) trees with labeled leaves for which each vertex has degree 1 or 3 , and let $\mathcal{T}_{n} \subseteq \mathcal{T}$ be the subset with exactly n leaves. Show that $T \in \mathcal{T}_{n}$ has exactly $2 n-3$ edges and that $\left|\mathcal{T}_{n}\right|=(2 n-5)!!=1 \cdot 3 \cdot 5 \cdots \cdots(2 n-5)$.
3. Let Π_{n} be the set of permutations of $[n]$ such that $\pi(i+1) \leq \pi(i)+1$ for $i \in[n-1]$. Find $\left|\Pi_{n}\right|$.
4. Recall that Kőnig's theorem states that in a bipartite graph G, the maximum size of a matching is equal to the minimum size of an edge cover. Prove Kőnig's theorem from Hall's marriage theorem.
5. Let (L, \leq) be a finite distributive lattice and $\operatorname{Irr}(L)$ be the set of join-irreducibles in L. For $t \in L$, define $K_{t}=\{p \in \operatorname{Irr}(L): p \leq t\}$. Show

$$
t=\bigvee_{p \in K_{t}} p
$$

6. Let \mathcal{B} be the set of words in the alphabet $\{a, b, c\}$ so that the number of a 's is even and the number of c 's is odd. If b_{n} is the number of words in \mathcal{B} with n letters, find

$$
B(x)=\sum_{n \geq 0} b_{n} x^{n} .
$$

7. Let Λ be the set of integer partitions. Prove the Cauchy identity

$$
\prod_{i, j \geq 1}\left(1-x_{i} y_{j}\right)^{-1}=\sum_{\lambda \in \Lambda} m_{\lambda}(x) h_{\lambda}(y)
$$

where $m_{\lambda}(x)$ is the monomial symmetric function in the variables x_{1}, x_{2}, \ldots and $h_{\lambda}(y)$ is the complete homogenous symmetric function in the variables $y_{1}, y_{2} \ldots$.
8. Prove that every permutation of size $n>r \cdot s$ contains either an increasing subsequence of length r or a decreasing subsequence of length s.

