Combinatorics Exam

- 1. Prove that if every vertex of a graph G has degree at least 3, then G has a cycle with a chord. (A *chord* is an edge joining two non-adjacent vertices on the cycle.)
- 2. Let \mathcal{T} be the set of (not rooted) trees with labeled leaves for which each vertex has degree 1 or 3, and let $\mathcal{T}_n \subseteq \mathcal{T}$ be the subset with exactly *n* leaves. Show that $T \in \mathcal{T}_n$ has exactly 2n-3 edges and that $|\mathcal{T}_n| = (2n-5)!! = 1 \cdot 3 \cdot 5 \cdots (2n-5)$.
- 3. Let Π_n be the set of permutations of [n] such that $\pi(i+1) \leq \pi(i)+1$ for $i \in [n-1]$. Find $|\Pi_n|$.
- 4. Recall that Kőnig's theorem states that in a bipartite graph G, the maximum size of a matching is equal to the minimum size of an edge cover. Prove Kőnig's theorem from Hall's marriage theorem.
- 5. Let (L, \leq) be a finite distributive lattice and $\operatorname{Irr}(L)$ be the set of join-irreducibles in L. For $t \in L$, define $K_t = \{p \in \operatorname{Irr}(L) : p \leq t\}$. Show

$$t = \bigvee_{p \in K_t} p.$$

6. Let \mathcal{B} be the set of words in the alphabet $\{a, b, c\}$ so that the number of a's is even and the number of c's is odd. If b_n is the number of words in \mathcal{B} with n letters, find

$$B(x) = \sum_{n \ge 0} b_n x^n.$$

7. Let Λ be the set of integer partitions. Prove the Cauchy identity

$$\prod_{i,j\geq 1} (1-x_i y_j)^{-1} = \sum_{\lambda\in\Lambda} m_\lambda(x) h_\lambda(y)$$

where $m_{\lambda}(x)$ is the monomial symmetric function in the variables x_1, x_2, \ldots and $h_{\lambda}(y)$ is the complete homogenous symmetric function in the variables y_1, y_2, \ldots

8. Prove that every permutation of size $n > r \cdot s$ contains either an increasing subsequence of length r or a decreasing subsequence of length s.