Combinatorics Exam

1. Let a_{n} be the number of ways to select a permutation of length n, and then color each of its cycles red, blue, or green. Find an explicit formula for a_{n}.
2. Let A be the graph obtained from K_{n} by deleting an edge. Find a closed formula (so no summation signs) for the number of spanning trees of A.
3. Prove bijectively that the number of graphs with vertex set $[n]$ for which all vertices have even degree is $2\binom{n-1}{2}$.
4. Prove that for every n, there is a tournament T on n vertices with at least $n!/ 2^{n-1}$ Hamiltonian paths.
5. Let $\mathbb{P}=\{1,2, \ldots\}$ and (\mathbb{P}, \mid) be the division poset (so $m \mid n$ if $n / m \in \mathbb{P}$). Find a formula for the Möbius function μ and prove that it is correct.
(Hint: decompose intervals in (\mathbb{P}, \mid) as products of chains.)
6. Let \mathcal{A} be the class of compositions into odd parts, where the size of $\alpha=\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{A}$ is $|\alpha|=a_{1}+\cdots+a_{n}$. Find the associated ordinary generating function $A(x)=\sum_{n \geq 0} a_{n} x^{n}$ and compute its growth rate $\lim \sup a_{n}^{1 / n}$.
7. Let \mathcal{P} be the class of integer partitions. Give a bijective proof of the Cauchy identity

$$
\prod_{i, j \geq 1}\left(1-x_{i} y_{j}\right)^{-1}=\sum_{\lambda \in \mathcal{P}} s_{\lambda}\left(x_{1}, x_{2}, \ldots\right) s_{\lambda}\left(y_{1}, y_{2}, \ldots\right)
$$

where s_{λ} is the Schur function of shape λ.
8. Let \mathcal{A} and \mathcal{B} be labeled combinatorial classes with size functions $|\cdot|_{A}$ and $|\cdot|_{B}$, respectively. Define an admissible construction \star so that $\mathcal{C}=\mathcal{A} \star \mathcal{B}$ satisfies the exponential generating function identity $C_{E}(x)=A_{E}(x) \cdot B_{E}(x)$.

