Combinatorics Exam

- 1. Let a_n be the number of ways to select a permutation of length n, and then color each of its cycles red, blue, or green. Find an explicit formula for a_n .
- 2. Let A be the graph obtained from K_n by deleting an edge. Find a closed formula (so no summation signs) for the number of spanning trees of A.
- 3. Prove bijectively that the number of graphs with vertex set [n] for which all vertices have even degree is $2^{\binom{n-1}{2}}$.
- 4. Prove that for every n, there is a tournament T on n vertices with at least $n!/2^{n-1}$ Hamiltonian paths.
- 5. Let $\mathbb{P} = \{1, 2, ...\}$ and $(\mathbb{P}, |)$ be the division poset (so m|n if $n/m \in \mathbb{P}$). Find a formula for the Möbius function μ and prove that it is correct. (Hint: decompose intervals in $(\mathbb{P}, |)$ as products of chains.)
- 6. Let \mathcal{A} be the class of compositions into odd parts, where the size of $\alpha = (a_1, \ldots, a_n) \in \mathcal{A}$ is $|\alpha| = a_1 + \cdots + a_n$. Find the associated ordinary generating function $A(x) = \sum_{n \ge 0} a_n x^n$ and compute its growth rate $\limsup a_n^{1/n}$.
- 7. Let \mathcal{P} be the class of integer partitions. Give a bijective proof of the Cauchy identity

$$\prod_{i,j\geq 1} (1-x_i y_j)^{-1} = \sum_{\lambda\in\mathcal{P}} s_\lambda(x_1, x_2, \dots) s_\lambda(y_1, y_2, \dots)$$

where s_{λ} is the Schur function of shape λ .

8. Let \mathcal{A} and \mathcal{B} be labeled combinatorial classes with size functions $|\cdot|_A$ and $|\cdot|_B$, respectively. Define an admissible construction \star so that $\mathcal{C} = \mathcal{A} \star \mathcal{B}$ satisfies the exponential generating function identity $C_E(x) = A_E(x) \cdot B_E(x)$.