Ph.D. Combinatorics Exam — August 2019

- 1. List the infinite families of symmetries of the standard square tiling of the plane. (No two families should have more than the identity in common.)
- 2. Let (v, b, r, k, λ) denote the number, respectively, of points, blocks, blocks containing a given point, points in each block, and blocks containing two distinct points of a balanced incomplete block design. Prove that

$$bk = vr$$
 and $\lambda (v-1) = r (k-1).$

- 3. Let h_n be the number of all words over the alphabet $\{A, B, C\}$ that are of length n and in which a letter A is never immediately followed by a letter B. Set $h_0 = 1$. Find a closed form for the ordinary generating function $H(z) = \sum_{n \ge 0} h_n z^n$.
- 4. Let ℓ_n be the total number of leaves in all unlabeled plane binary trees on n vertices. (These trees are rooted, and each vertex has at most two children, and every child is either a left child or a right child, even if it is an only child.) Note that $\ell_1 = 1$, $\ell_2 = 2$, and $\ell_3 = 6$.
 - (a) Find the generating function $L(z) = \sum_{n>1} \ell_n z^n$ in closed form.
 - (b) Find an explicit formula for the numbers ℓ_n .
- 5. Let t_n be the number of ways to choose a permutation of length n, and then to color a subset (not necessarily proper) of its even cycles red. Find a closed formula for the exponential generating function of the numbers t_n .
- 6. Recall that for a prime power q, the Gaussian or q-binomial coefficient $\begin{bmatrix} n \\ k \end{bmatrix}_q$ is defined to be the number of k dimensional subspaces of an n-dimensional vector space over GF(q). Equivalently, we can think of $\begin{bmatrix} n \\ k \end{bmatrix}_q$ as counting $k \times n$ matrices over GF(q)which are in reduced row echelon form and have no all-zero rows. Using either of these interpretations, prove that

$$\begin{bmatrix} n\\ k \end{bmatrix}_q = \begin{bmatrix} n-1\\ k \end{bmatrix}_q + q^{n-k} \begin{bmatrix} n-1\\ k-1 \end{bmatrix}_q$$

for all $n, k \geq 1$.

- 7. Recall that $R(k, \ell)$ is the minimum integer n such that every graph on n vertices contains either a clique (complete subgraph) on k vertices or an independent set on ℓ vertices. Prove that $R(k, \ell)$ is finite for all k and ℓ .
- 8. Prove that $R(k,k) < 2^{k/2}$ for all k. Hint: Consider a random graph.