PhD Analysis Exam, May 2018

DO SIX OF EIGHT. ANSWER EACH PROBLEM ON A SEPARATE SHEET OF PAPER. WRITE SOLUTIONS IN A NEAT AND LOGICAL FASHION, GIVING COMPLETE REASONS FOR ALL STEPS.

- (1) Suppose (X, \mathcal{M}) and (Y, \mathcal{N}) are measurable spaces, $\mathscr{E} \subset \mathcal{N}$ and $f: X \to Y$. Show, if the σ -algebra generated by \mathscr{E} contains \mathcal{N} and $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathscr{E}$, then f is $\mathcal{M} \mathcal{N}$ measurable.
- (2) Do two. In each case, give a brief justification for your answer.
 - (a) Give an example, if possible, of a measurable set $C \subset \mathbb{R}$ of positive Lebesgue measure that contains no (non-trivial) interval.
 - (b) Give an example, if possible, of a measure space (X, \mathcal{M}, μ) and a sequence of measurable functions $f_n : X \to \mathbb{C}$ that converge in measure, but not pointwise a.e.
 - (c) Give an example, if possible, of measure spaces (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) and a function $f: X \times Y \to [0, \infty)$ that is measurable with respect to the product measure σ -algebra $\mathcal{M} \otimes \mathcal{N}$, but for which

$$\int_X \int_Y f(x,y) \, d\nu d\mu \neq \int_Y \int_X f(x,y) \, d\mu d\nu.$$

(3) Let (X, \mathcal{M}, μ) be a σ -finite measure space (μ a positive measure). Suppose \mathcal{N} is a sub- σ -algebra of \mathcal{M} and $\nu = \mu|_{\mathcal{N}}$ is σ -finite. Given $f \in L^1(\mu)$, show, by considering the mapping $\rho : \mathcal{N} \to [0, \infty)$ defined by $\rho(E) = \int_E f d\mu$, that there exists an \mathcal{N} measurable g such that $g \in L^1(\nu)$ and

$$\int_E f \, d\mu = \int_E g \, d\nu$$

for all $E \in \mathcal{N}$. Determine g in the case (X, \mathcal{M}, μ) is the interval [0, 1] with Lebesgue measure and $\mathcal{N} = \{ \varnothing, [0, \frac{1}{2}), [\frac{1}{2}, 1], [0, 1] \}.$

(4) Show $f : [0, \infty) \to \mathbb{R}$ defined by $f(x) = (1 + x)^{-2}$ is integrable (with respect to Lebesgue measure on $[0, \infty)$). Determine

$$\lim_{n \to \infty} \int_0^\infty \frac{\sin(\frac{x}{n})}{(1+(\frac{x}{n}))^n} \, dx.$$

(5) Prove, if X is a Banach space and M is a finite dimensional subspace of X, then there is a closed subspace N of X such that $M \cap N = (0)$ and for each $x \in X$ there exist $m \in M$ and $n \in N$ such that x = m + n.

- (6) Let (X, \mathcal{M}, μ) be a measure space and suppose $1 \leq q . Show,$ $if <math>L^p(\mu) \subset L^q(\mu)$, then there is a constant κ such that if $E \in \mathcal{M}$ and $\mu(E) < \infty$, then $\mu(E) \leq \kappa$.
- (7) Suppose $E \subset \mathbb{R}$ is (Lebesgue) measurable with positive measure. Show

$$E - E := \{x - y : x, y \in E\}$$

contains an open interval about 0.

(8) Recall c_{00} is the vector subspace of $\ell^{\infty}(\mathbb{N})$ consisting of sequences $a = (a_n)$ that are eventually zero (meaning there is an N, depending on a, such that $a_n = 0$ for n > N). Is there a norm on c_{00} that makes c_{00} a Banach space?