PhD Analysis Exam, May 2018
Do six of eight. Answer each problem on a separate sheet of paper. Write solutions in a neat and logical fashion, giving COMPLETE REASONS FOR ALL STEPS.
(1) Suppose (X, \mathscr{M}) and (Y, \mathscr{N}) are measurable spaces, $\mathscr{E} \subset \mathscr{N}$ and $f: X \rightarrow$ Y. Show, if the σ-algebra generated by \mathscr{E} contains \mathscr{N} and $f^{-1}(E) \in \mathscr{M}$ for all $E \in \mathscr{E}$, then f is $\mathscr{M}-\mathscr{N}$ measurable.
(2) Do two. In each case, give a brief justification for your answer.
(a) Give an example, if possible, of a measurable set $C \subset \mathbb{R}$ of positive Lebesgue measure that contains no (non-trivial) interval.
(b) Give an example, if possible, of a measure space (X, \mathscr{M}, μ) and a sequence of measurable functions $f_{n}: X \rightarrow \mathbb{C}$ that converge in measure, but not pointwise a.e.
(c) Give an example, if possible, of measure spaces (X, \mathscr{M}, μ) and (Y, \mathscr{N}, ν) and a function $f: X \times Y \rightarrow[0, \infty)$ that is measurable with respect to the product measure σ-algebra $\mathscr{M} \otimes \mathscr{N}$, but for which

$$
\int_{X} \int_{Y} f(x, y) d \nu d \mu \neq \int_{Y} \int_{X} f(x, y) d \mu d \nu
$$

(3) Let (X, \mathscr{M}, μ) be a σ-finite measure space (μ a positive measure). Suppose \mathscr{N} is a sub- σ-algebra of \mathscr{M} and $\nu=\left.\mu\right|_{\mathscr{N}}$ is σ-finite. Given $f \in L^{1}(\mu)$, show, by considering the mapping $\rho: \mathscr{N} \rightarrow[0, \infty)$ defined by $\rho(E)=$ $\int_{E} f d \mu$, that there exists an \mathscr{N} measurable g such that $g \in L^{1}(\nu)$ and

$$
\int_{E} f d \mu=\int_{E} g d \nu
$$

for all $E \in \mathscr{N}$. Determine g in the case (X, \mathscr{M}, μ) is the interval $[0,1]$ with Lebesgue measure and $\mathscr{N}=\left\{\varnothing,\left[0, \frac{1}{2}\right),\left[\frac{1}{2}, 1\right],[0,1]\right\}$.
(4) Show $f:[0, \infty) \rightarrow \mathbb{R}$ defined by $f(x)=(1+x)^{-2}$ is integrable (with respect to Lebesgue measure on $[0, \infty)$). Determine

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{\sin \left(\frac{x}{n}\right)}{\left(1+\left(\frac{x}{n}\right)\right)^{n}} d x
$$

(5) Prove, if X is a Banach space and M is a finite dimensional subspace of X, then there is a closed subspace N of X such that $M \cap N=(0)$ and for each $x \in X$ there exist $m \in M$ and $n \in N$ such that $x=m+n$.
(6) Let (X, \mathscr{M}, μ) be a measure space and suppose $1 \leq q<p<\infty$. Show, if $L^{p}(\mu) \subset L^{q}(\mu)$, then there is a constant κ such that if $E \in \mathscr{M}$ and $\mu(E)<\infty$, then $\mu(E) \leq \kappa$.
(7) Suppose $E \subset \mathbb{R}$ is (Lebesgue) measurable with positive measure. Show

$$
E-E:=\{x-y: x, y \in E\}
$$

contains an open interval about 0 .
(8) Recall c_{00} is the vector subspace of $\ell^{\infty}(\mathbb{N})$ consisting of sequences $a=\left(a_{n}\right)$ that are eventually zero (meaning there is an N, depending on a, such that $a_{n}=0$ for $\left.n>N\right)$. Is there a norm on c_{00} that makes c_{00} a Banach space?

