PhD Analysis Examination May 2024

Answer each question on a separate sheet of paper. Write solutions in a neat and logical fashion, giving complete reasons for all steps.

Attempt SIX problems.

1. Consider Lebesgue measure on the real line \mathbb{R} . Give an example for each of the following, if possible. If not possible, give a brief explanation.

A sequence f_n in $L^1(\mathbb{R})$ converging to an f in $L^1(\mathbb{R})$...

- a) ... in the L^1 norm but not in measure,
- b) ...in measure but not in the L^1 norm,
- c) ... in the L^1 norm but not a.e.,
- d) ...a.e. but not in measure.
- 2. State Tonelli's theorem, and give an example to show that the σ -finiteness hypothesis is necessary.
- 3. For σ -finite measures μ and ν , define what it means for μ to be *absolutely continuous* with respect to ν , and *singular* with respect to ν . State the Lebesgue-Radon-Nikodym theorem.
- 4. Let (X, \mathcal{M}, μ) be a σ -finite measure space. Suppose that g is a measurable function with the property that $gf \in L^2$ for all $f \in L^2$. Prove that $g \in L^{\infty}$.
- 5. Fix $1 , let <math>\mu$ be a σ -finite measure, and let (f_n) be a sequence in $L^p(\mu)$. Suppose that there exists a function $f \in L^p(\mu)$ such that

$$\int f_n g \, d\mu \to \int f g \, d\mu$$

for every $g \in L^q(\mu)$, where $\frac{1}{p} + \frac{1}{q} = 1$.

- a) Prove that $\sup_n \{ \|f_n\|_p \} < +\infty$.
- b) Prove that $||f||_p \le \limsup ||f_n||_p$.
- c) Give an example to show that strict inequality can hold in part (b).
- 6. Let \mathcal{X} be a normed vector space. Say $x_n \to x$ weakly if $f(x_n) \to f(x)$ for all $f \in \mathcal{X}^*$. Prove that if \mathcal{M} is a norm closed subspace of \mathcal{X} , and (x_n) is a sequence in \mathcal{M} converging weakly to x, then $x \in \mathcal{M}$.

7. Let μ be a finite signed Borel measure on [0, 1]. Suppose that

$$\int_{0}^{1} \sin(2\pi nx) \, d\mu(x) = 0 \quad \text{and} \quad \int_{0}^{1} \cos(2\pi nx) \, d\mu(x) = 0$$

for all n = 0, 1, 2, ... Prove that $\mu = 0$. Does it suffice to assume only the vanishing of the sine integrals? Prove, or give a counterexample.

- 8. Short answer.
 - a) Give a brief explanation of how the Fourier transform is defined on $L^2(\mathbb{R})$.
 - b) Sketch a proof that the Banach space $L^1(\mathbb{R})$ is not reflexive.
 - c) Explain why the norm in $\ell^1(\mathbb{N})$ cannot be given by an inner product.