PhD Analysis Examination January 2023

Answer each question on a separate sheet of paper. Write solutions in a neat and logical fashion, giving complete reasons for all steps.

Attempt SIX problems.

- 1. For any two of the following, either give an example or explain why no example exists.
 - a) a sequence of Lebesgue measurable functions on $\mathbb R$ which converges in measure but not Lebesgue a.e.
 - b) a closed set $E \subset [0,1]$ with positive Lebesgue measure, but which contains no open intervals
 - c) a decreasing sequence of nonnegative measurable functions on \mathbb{R} such that $\lim \int f_n \neq \int \lim f_n$
- 2. Prove that for any positive measure μ , the space $L^1(\mu)$ is complete in the L^1 norm.
- 3. Let (μ_n) be a sequence of finite signed measures on a measurable space (X, \mathscr{M}) . Prove that there exists a finite, positive measure ν on (X, \mathscr{M}) such that $\mu_n \ll \nu$ for all n.
- 4. Suppose that $f \in L^1[0,1]$ and $\int_0^x f \, dm = 0$ for all $x \in [0,1]$. What can you conclude about f? (Prove your claim.)
- 5. Let \mathcal{X} be a Banach space. Say that a sequence $(x_n) \subset \mathcal{X}$ converges weakly to $x \in \mathcal{X}$ if $f(x_n) \to f(x)$ for all $f \in \mathcal{X}^*$. Prove the following:
 - a) If (x_n) converges weakly, then $\sup_n ||x_n|| < \infty$.
 - b) Weak limits are unique. (That is, if $x_n \to x$ weakly and $x_n \to y$ weakly, then x = y.)
- 6. a) State the closed graph theorem. b) Let \mathcal{X} be a Banach space with closed subspaces $\mathcal{Y}, \mathcal{Z} \subset \mathcal{X}$. Suppose that every $x \in \mathcal{X}$ admits a *unique* decomposition x = y + z with $y \in \mathcal{Y}, z \in \mathcal{Z}$. Prove that there is a constant C so that $\|y\| \leq C \|x\|$ and $\|z\| \leq C \|x\|$.
- 7. Let *H* be a Hilbert space and $T : H \to H$ a bounded linear operator. Define the *adjoint operator* $T^* : H \to H$ and prove that it is bounded, with $||T^*|| = ||T||$.
- 8. (Short answer, you do not need to give a detailed proof, just a brief explanation.)
 - a) Define the Fourier transform on $L^1(\mathbb{R})$ and sketch its extension to $L^2(\mathbb{R})$.
 - b) Sketch a construction of a bounded linear functional λ on $L^{\infty}(\mathbb{R})$ which is *not* of the form $\lambda(f) = \int f(x)g(x) dx$ for any L^1 function g.
 - c) Sketch a proof of the fact that there is no norm under which c_{00} is complete.