PhD Analysis Examination May 2022

Answer each question on a separate sheet of paper. Write solutions in a neat and logical fashion, giving complete reasons for all steps.

Attempt SIX problems.

- 1. State Tonelli's theorem, and give an example to show that the σ -finiteness hypothesis is necessary.
- 2. Let μ be a positive measure and let (E_n) be a sequence of measurable sets with $\mu(E_n) < \infty$ for all n. Prove that if $\mathbf{1}_{E_n} \to f$ in $L^1(\mu)$, then there exists a measurable set E so that $f = \mathbf{1}_E$ a.e. and $\mu(E) = \lim \mu(E_n)$.
- 3. Let μ and ν be finite, positive measures defined on the same measurable space (X, \mathcal{M}) , and suppose that $\nu \ll \mu$.
 - a) Prove that if $L^1(\mu) \subset L^1(\nu)$, then the inclusion map $\iota : L^1(\mu) \hookrightarrow L^1(\nu)$ is necessarily bounded.
 - b) Prove that if $L^1(\mu) \subset L^1(\nu)$ then $\frac{d\nu}{d\mu} \in L^{\infty}(\mu)$.
- 4. Let μ be a positive measure and suppose that 1 . Prove that

$$L^r(\mu) \subset L^p(\mu) + L^q(\mu)$$

(That is, every $f \in L^r(\mu)$ can be written as a sum f = g + h where $g \in L^p(\mu)$ and $h \in L^q(\mu)$.)

5. Let \mathcal{X} be a Banach space, and let \mathcal{M}, \mathcal{N} be closed subspaces of \mathcal{X} . Suppose that every $x \in \mathcal{X}$ can be decomposed *uniquely* as

$$x = m + n$$

with $m \in \mathcal{M}, n \in \mathcal{N}$. Prove that the assignment $x \to m$ defines a bounded linear operator from \mathcal{X} to \mathcal{M} .

6. a) Prove that for each integer $n \ge 0$, there exists a function $f_n \in L^2[0, 1]$ such that for every polynomial p of degree at most n,

$$p(1) = \int_0^1 p(x) f_n(x) \, dx.$$

Is f_n unique?

b) Is there a function $f \in L^2[0, 1]$ such that

$$p(1) = \int_0^1 p(x)f(x) \, dx$$

for *all* polynomials p? Prove or disprove.

- 7. a) State the Banach Isomorphism Theorem and the Closed Graph Theorem. b) Using the Banach Isomorphism Theorem (or otherwise), prove the Closed Graph Theorem.
- 8. (Short answer, you do not need to give a detailed proof, just a brief explanation.)
 - a) Define the Fourier transform on $L^1(\mathbb{R})$ and sketch its extension to $L^2(\mathbb{R})$.
 - b) Sketch a construction of a bounded linear functional λ on $L^{\infty}(\mathbb{R})$ which is *not* of the form $\lambda(f) = \int f(x)g(x) dx$ for any L^1 function g.
 - c) Sketch a proof of the fact that there is no norm under which c_{00} is complete.