PhD Analysis Examination May 2021

Answer each question on a separate sheet of paper. Write solutions in a neat and logical fashion, giving complete reasons for all steps.

Attempt SIX problems.

1. Let $f \in L^1(\mathbb{R})$ and suppose that

$$\int_{a}^{b} f \, dm = 0 \quad \text{for all rational } a < b.$$

Does this imply that f = 0 a.e.? Prove, or give a counterexample.

2. Prove that if $E \subset \mathbb{R}$ has positive Lebesgue measure, then the set

$$E - E = \{x - y | x, y \in E\}$$

contains an open interval centered at 0.

3. Let μ and ν be nonzero, σ -finite measures defined on the same measurable space (X, \mathcal{M}) , and suppose each is absolutely continuous with respect to the other. Prove that

$$\frac{d\nu}{d\mu} = \frac{1}{\left(\frac{d\mu}{d\nu}\right)}$$
 μ -a.e.

4. Let μ be a positive measure and suppose that 1 . Prove that

$$L^p(\mu) \cap L^q(\mu) \subset L^r(\mu).$$

- 5. Let H be a Hilbert space and $M \subset H$ a norm-closed subspace. Prove that if (x_n) is a sequence from M and x_n converges weakly to $x \in H$, then in fact $x \in M$.
- 6. a) Prove that for each integer $n \ge 0$, there exists a finite Borel measure μ_n on [0, 1] so that for every polynomial p of degree at most n,

$$p'(0) = \int_0^1 p(x) \, d\mu_n(x).$$

b) Prove that there is no finite Borel measure μ on [0, 1] such that

$$p'(0) = \int_0^1 p(x) \, d\mu(x).$$

for *all* polynomials p.

- 7. a) State the Banach Isomorphism Theorem and the Closed Graph Theorem. b) Using the Banach Isomorphism Theorem (or otherwise), prove the Closed Graph Theorem.
- 8. (Short answer, you do not need to give a detailed proof, just a brief explanation.)
 - a) Give an example, if possible, of a sequence $(f_n) \subset L^2(\mathbb{R})$ such that $f_n \to 0$ weakly, but not in measure.
 - b) Give an example to show that the σ -finiteness hypothesis is necessary in Tonelli's theorem.
 - c) If (X, \mathcal{M}) is a measurable space, μ is a signed measure on (X, \mathcal{M}) , and μ omits the value $+\infty$, does μ attain a maximum value on \mathcal{M} ?