Do three from part A and three from part B. Answer each problem on a separate sheet of paper. Write solutions in a neat and logical fashion, giving complete reasons for all steps.

## Part A

(1) Let $X, Y$ be topological spaces. Prove that every continuous function $f: X \rightarrow Y$ is Borel measurable.
(2) Short answer.
(a) Give an example, if possible, of a closed set $E \subset \mathbb{R}$ of positive Lebesgue measure that contains no interval.
(b) For $n \geq 2$, let $f_{n}=e^{i n x} x^{-n}$. Find

$$
\lim _{n \rightarrow \infty} \int_{1}^{\infty} f_{n} d x
$$

(c) Give an example, if possible, of strict inequality in Fatou's Lemma.
(3) Let $X=Y=[0,1], \mathscr{M}=\mathscr{B}_{[0,1]}$ denote the Borel $\sigma$-algebra, and $\mathscr{N}=2^{\mathbb{R}}$. Let $\mu$ Lebesgue measure on $\mathscr{M}$, and let $\nu$ counting measure on $\mathscr{N}$. Prove that $\Delta=\{(x, x): x \in[0,1]\} \subset[0,1] \times[0,1]$ is an element of the product $\sigma$-algebra $\mathscr{M} \otimes \mathscr{N}$ and compute

$$
\begin{equation*}
\int_{X}\left(\int_{Y} \mathbf{1}_{\Delta}(x, y) d \nu(y)\right) d \mu(x), \quad \int_{Y}\left(\int_{X} \mathbf{1}_{E}(x, y) d \mu(x)\right) d \nu(y) . \tag{1}
\end{equation*}
$$

Explain the relation to Tonelli's Theorem on product integration.
(4) State the Hahn Decomposition Theorem. Prove, if $\rho$ is a signed measure on the measurable space $(X, \mathscr{M})$, then there exist unique positive measures $\rho_{ \pm}$on $\mathscr{M}$ such that $\rho_{+} \perp \rho_{-}$and $\rho=\rho_{+}-\rho_{-}$.
Assuming $\mu$ is a positive measure on $\mathscr{M}$ and $f \in L^{1}(\mu)$ is real-valued, identify $\rho_{ \pm}$for the signed measure

$$
\rho(E)=\int_{E} f d \mu .
$$

## Part B

5. State the Baire Category Theorem. Suppose $X$ is a Banach space. Prove that, as a vector space, $X$ does not have a countable basis. (Here countable means equinumerous with $\mathbb{N}$.)

6 . Let $\left(\varphi_{n}\right)$ be a sequence from $L^{1}(\mathbb{R})$ with the following properties:
(i) $\varphi_{n} \geq 0$ for all $n$,
(ii) $\int \varphi_{n} d x=1$ for all $n$;
(iii) for each $\delta>0, \lim _{n \rightarrow \infty} \int_{|x|>\delta} \varphi_{n} d x=0$.

Show, if $f \in L^{1}(\mathbb{R})$, then $\varphi_{n} \star f$ converges to $f$ in $L^{1}(\mathbb{R})$.
7. Let $X$ be a Banach space, $Y \subset X$ a closed subspace. Say $Y$ is complemented in $X$ if there exists a closed subspace $Z \subset X$ such that $Y \cap Z=\{0\}$ and $Y+Z=X$.

Prove that if $Y$ is complemented in $X$, then there exists a bounded linear operator $T: X \rightarrow Y$ such that $T(y)=y$ for all $y \in Y$.
8. Let $S: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ denote the shift operator defined, for $f=$ $(f(n))_{n=0}^{\infty} \in \ell^{2}(N)$, by

$$
S f(n)= \begin{cases}f(n-1) & n \geq 1 \\ 0 & n=0\end{cases}
$$

Show $S$ is an isometry (and in particular is bounded) and find $S^{*}$ and $S S^{*}$. Is $S$ unitary?

