PhD Analysis Exam, August 2019

DO THREE FROM PART A AND THREE FROM PART B. ANSWER EACH PROBLEM ON A SEPARATE SHEET OF PAPER. WRITE SOLUTIONS IN A NEAT AND LOGICAL FASHION, GIVING COMPLETE REASONS FOR ALL STEPS.

Part A

(1) Let X, Y be topological spaces. Prove that every continuous function $f: X \to Y$ is Borel measurable.

(2) Short answer.

- (a) Give an example, if possible, of a *closed* set $E \subset \mathbb{R}$ of positive Lebesgue measure that contains no interval.
- (b) For $n \ge 2$, let $f_n = e^{inx} x^{-n}$. Find

$$\lim_{n \to \infty} \int_1^\infty f_n \, dx$$

(c) Give an example, if possible, of strict inequality in Fatou's Lemma.

(3) Let X = Y = [0, 1], $\mathscr{M} = \mathscr{B}_{[0,1]}$ denote the Borel σ -algebra, and $\mathscr{N} = 2^{\mathbb{R}}$. Let μ Lebesgue measure on \mathscr{M} , and let ν counting measure on \mathscr{N} . Prove that $\Delta = \{(x, x) : x \in [0, 1]\} \subset [0, 1] \times [0, 1]$ is an element of the product σ -algebra $\mathscr{M} \otimes \mathscr{N}$ and compute

$$\int_{X} \left(\int_{Y} \mathbf{1}_{\Delta}(x, y) \, d\nu(y) \right) \, d\mu(x), \quad \int_{Y} \left(\int_{X} \mathbf{1}_{E}(x, y) \, d\mu(x) \right) \, d\nu(y). \tag{1}$$

Explain the relation to Tonelli's Theorem on product integration.

(4) State the Hahn Decomposition Theorem. Prove, if ρ is a signed measure on the measurable space (X, \mathcal{M}) , then there exist unique positive measures ρ_{\pm} on \mathcal{M} such that $\rho_{+} \perp \rho_{-}$ and $\rho = \rho_{+} - \rho_{-}$.

Assuming μ is a positive measure on \mathscr{M} and $f \in L^1(\mu)$ is real-valued, identify ρ_{\pm} for the signed measure

$$\rho(E) = \int_E f \, d\mu.$$

Part B

- 5. State the Baire Category Theorem. Suppose X is a Banach space. Prove that, as a vector space, X does not have a countable basis. (Here countable means equinumerous with \mathbb{N} .)
- 6. Let (φ_n) be a sequence from $L^1(\mathbb{R})$ with the following properties:
 - (i) $\varphi_n \geq 0$ for all n,
 - (ii) $\int \varphi_n \, dx = 1$ for all n;
 - (iii) for each $\delta > 0$, $\lim_{n \to \infty} \int_{|x| > \delta} \varphi_n \, dx = 0$.

Show, if $f \in L^1(\mathbb{R})$, then $\varphi_n \star f$ converges to f in $L^1(\mathbb{R})$.

7. Let X be a Banach space, $Y \subset X$ a closed subspace. Say Y is complemented in X if there exists a closed subspace $Z \subset X$ such that $Y \cap Z = \{0\}$ and Y + Z = X.

Prove that if Y is complemented in X, then there exists a bounded linear operator $T: X \to Y$ such that T(y) = y for all $y \in Y$.

8. Let $S : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ denote the *shift operator* defined, for $f = (f(n))_{n=0}^{\infty} \in \ell^2(N)$, by

$$Sf(n) = \begin{cases} f(n-1) & n \ge 1; \\ 0 & n = 0. \end{cases}$$

Show S is an isometry (and in particular is bounded) and find S^* and SS^* . Is S unitary?