PhD Analysis Exam, May 2017

DO SIX OF EIGHT

Work each problem on a separate sheet. Problems (2) and (5) are short answer. For the remaining problems, please provide complete proofs with all details.

- (1) Prove that if X, Y are topological spaces and $f: X \to Y$ is continuous, then f is Borel measurable.
- (2) (Do three of four.)
 - (a) Give an example, if possible, of a closed set $E \subset \mathbb{R}$ of positive Lebesgue measure that contains no interval.
 - (b) Give an example, if possible, of a sequence $f_n : [0, 1] \to \mathbb{R}$ of Lebesgue measurable functions that converges in measure, but not pointwise a.e.
 - (c) Give an example, if possible, of a premeasure on a Boolean algebra \mathscr{A} without a unique extension to a measure on the σ -algebra generated by \mathscr{A} .
 - (d) Determine the limit of the sequence $(a_n)_{n=1}^{\infty}$ defined by

$$a_n = \int_1^\infty \frac{\cos^2(\pi t)}{t^n} \, dt.$$

(3) Suppose (X, \mathcal{M}, μ) is a σ -finite measure space and $\mathcal{N} \subset \mathcal{M}$ is a (sub) σ -algebra. Let $\nu = \mu|_{\mathcal{N}}$. Show, if (X, \mathcal{N}, ν) is a σ -finite measure space and $f \in L^1(\mu)$, then there exists a $g \in L^1(\nu)$ such that, for all $E \in \mathcal{N}$,

$$\int_E g \, d\nu \, = \, \int_E f \, d\mu$$

Is the σ -finiteness hypothesis on ν necessary?

(4) Given
$$f \in L^1([0,1])$$
, let $g(x) = \int_x^1 \frac{f(t)}{t} dt$. Show $g \in L^1([0,1])$ and
 $\int_0^1 g = \int_0^1 f.$

- (5) (Do three of four)
 - (a) Is there a norm on the vector space

 $c_{00} = \{f : \mathbb{N} \to \mathbb{C} : \text{ there exists an } N \text{ such that} f(n) = 0 \text{ for } n \ge N \}$

that makes c_{00} a Banach space?

- (b) Explain what is meant by the Fourier transform of a function $f \in L^2(\mathbb{R})$.
- (c) Is there bounded linear bijection between C([0,1]) and $L^{\infty}([0,1])$?
- (d) Give an example, if possible, of a sequence of unit vectors (f_n) from $L^2(\mathbb{R})$ that converges weakly to some $f \in L^2(\mathbb{R})$, but not in norm.
- (6) Show, if $E \subset \mathbb{R}$ is a Lebesgue measurable set of positive measure, then $E E = \{x y : x, y \in E\}$ contains an open interval.

(7) Suppose \mathscr{X} is a Banach space and \mathscr{M} and \mathscr{N} are closed subspaces. Show, if for each $x \in \mathscr{X}$ there exist unique $m \in \mathscr{M}$ and $n \in \mathscr{N}$ such that

$$x = m + n$$
,

then the mapping $P: \mathscr{X} \to \mathscr{M}$ defined by Px = m is bounded.

(8) Suppose (X, \mathscr{M}, μ) is a σ -finite measure space and $1 \leq q . Show, <math>L^q \subset L^p$ if and only if there exists a $\delta > 0$ such that if $E \in \mathscr{M}$ then either $\mu(E) = 0$ or $\mu(E) \geq \delta$.