Numerical Linear Algebra Exam — January, 2018 Do 4 (four) problems

- 1. Assume $A \in \mathbb{R}^{m,n}$ with $m \ge n$, $\operatorname{rank}(A) = n$ and $b \in \mathbb{R}^n$.
 - (a) Define the least squares solution to Ax = b.
 - (b) Derive the normal equations for the least squares problem.
 - (c) Prove that $A^T A$ is invertible.
 - (d) Prove that the unique solution to the least squares problem is $(A^T A)^{-1} A^T b$.
 - (e) Describe how to solve the least squares problem using the QR decomposition of A.
- 2. Define a normal matrix and prove that the following are equivalent.
 - (a) A is normal.
 - (b) $||Ax||_2 = ||A^*x||_2$ for every x.
 - (c) A is unitarily diagonalizable.
- 3. Assume $A \in \mathbb{R}^{m,m}$
 - (a) Prove that $\langle x, y \rangle_A = x^* A y$ is an inner product on \mathbb{R}^m if and only if A is symmetric and positive definite
 - (b) Assume now that A is symmetric and positive definite. If x_* is the solution to Ax = b and $\{p_1, \ldots, p_m\}$ is an orthonormal basis for \mathbb{R}^m with respect to \langle , \rangle_A and $x_* = \sum c_i p_i$, give a formula for the c_i .
- 4. If q_1, \ldots, q_n is an orthonormal basis for the subspace $V \subset \mathbb{C}^m$ with m > n, prove that the orthogonal projector onto V is QQ^* , where Q is the matrix whose columns are the q_j .
- 5. Assume $A \in \mathbb{C}^{m,m}$
 - (a) Show that A has a Schur decomposition.
 - (b) If A has a collection of m linearly dependent eigenvectors, show that A is diagonalizable.