Do 4 (four) problems

1. Assume $A \in \mathbb{R}^{m, n}$ with $m \geq n, \operatorname{rank}(A)=n$ and $b \in \mathbb{R}^{n}$.
(a) Define the least squares solution to $A x=b$.
(b) Derive the normal equations for the least squares problem.
(c) Prove that $A^{T} A$ is invertible.
(d) Prove that the unique solution to the least squares problem is $\left(A^{T} A\right)^{-1} A^{T} b$.
(e) Describe how to solve the least squares problem using the QR decomposition of A.
2. Define a normal matrix and prove that the following are equivalent.
(a) A is normal.
(b) $\|A x\|_{2}=\left\|A^{*} x\right\|_{2}$ for every x.
(c) A is unitarily diagonalizable.
3. Assume $A \in \mathbb{R}^{m, m}$
(a) Prove that $\langle x, y\rangle_{A}=x^{*} A y$ is an inner product on \mathbb{R}^{m} if and only if A is symmetric and positive definite
(b) Assume now that A is symmetric and positive definite. If x_{*} is the solution to $A x=b$ and $\left\{p_{1}, \ldots, p_{m}\right\}$ is an orthonormal basis for \mathbb{R}^{m} with respect to \langle,\rangle_{A} and $x_{*}=\sum c_{i} p_{i}$, give a formula for the c_{i}.
4. If $q_{1}, \ldots q_{n}$ is an orthonormal basis for the subspace $V \subset \mathbb{C}^{m}$ with $m>n$, prove that the orthogonal projector onto V is $Q Q^{*}$, where Q is the matrix whose columns are the q_{j}.
5. Assume $A \in \mathbb{C}^{m, m}$
(a) Show that A has a Schur decomposition.
(b) If A has a collection of m linearly dependent eigenvectors, show that A is diagonalizable.
