Numerical Analysis Qualifying Exam - May, 2018
 Do all five (5) problems

1. Consider

$$
\begin{equation*}
y^{\prime}=4 t y ; \quad t \in[0,1] ; \quad y(0)=2, \tag{1}
\end{equation*}
$$

which has solution $Y(t)=2 e^{2 t^{2}}$.
(a) Using the Euler method error estimate find the value of h required to ensure that the Euler method solution w_{i} of (1) satisfies $\left|Y\left(t_{i}\right)-w_{i}\right| \leq 0.1$ for all i.
(b) Derive the Taylor method of order 2 for (1).
2. Let $g \in C^{2}([a, b])$ and $p \in(a, b)$ with $g(p)=p, g^{\prime}(p)=0, g^{\prime \prime}(p) \neq 0$.
(a) Show there is an $\epsilon>0$ so that for all $x \in[p-\epsilon, p+\epsilon]$, we have $g^{n}(x) \rightarrow p$ as $n \rightarrow \infty$.
(b) With ϵ as in part(a), show that for all $x \in[p-\epsilon, p+\epsilon]$, we have $|g(x)-p| \leq M|x-p|^{2}$ where $M=\max \left\{\left|g^{\prime \prime}(x)\right|:|x-p| \leq \epsilon\right\} / 2$.
3. Find the second order (i.e. quadratic) least squares approximation to the function $f(x)=$ x^{4} on the interval $[-1,1]$ with respect to the weight $w(x) \equiv 1$ using the fact that the first three orthonormal polynomials on $[-1,1]$ with respect to this weight are

$$
\varphi_{0}(x)=\sqrt{1 / 2}, \quad \varphi_{1}(x)=\sqrt{3 / 2} x, \text { and } \varphi_{2}(x)=\sqrt{5 / 8}\left(3 x^{2}-1\right)
$$

4. (a) Assume $N(h)$ is the computed approximation for M for each $h>0$ and

$$
M=N(h)+C_{1} h+C_{2} h^{2}+C_{3} h^{3}+\ldots .
$$

Use the values $N(h), N(h / 3)$, and $N(h / 9)$ to produce a $O\left(h^{3}\right)$ approximation to M.
(b) Taylor's formula yields the following.

$$
f^{\prime}\left(x_{0}\right)=\frac{1}{h}\left(f\left(x_{0}+h\right)-f\left(x_{0}\right)\right)-\frac{h}{2} f^{\prime \prime}\left(x_{0}\right)-\frac{h^{2}}{6} f^{\prime \prime \prime}\left(x_{0}\right)+O\left(h^{3}\right) .
$$

Use this with the extrapolation of part (a) to derive an $O\left(h^{3}\right)$ formula for $f^{\prime}\left(x_{0}\right)$.
5. Find a, b, c so that the quadrature formula

$$
\int_{0}^{2} f(x) d x=a f(0)+b f(1)+c f(2)
$$

has degree of precision as large as possible, and show it is no larger than your answer.

