Numerical Linear Algebra Qualifying Exam – May, 2018 Do 4 (four) problems

- 1. (a) If P is a projector, prove that $\operatorname{null}(P) \cap \operatorname{range}(P) = \emptyset$ and $\operatorname{null}(P) = \operatorname{range}(I P)$.
 - (b) Prove that P is an orthogonal projector if and only if it is Hermitian.
 - (c) If q_1, \ldots, q_n is an orthonormal basis for the subspace $V \subset \mathbb{C}^m$ with m > n, prove that the orthognal projector onto V is QQ^* , where Q is the matrix whose columns are the q_j .
- 2. Assume $A \in \mathbb{C}^{m \times m}$.
 - (a) Prove that $||A||_2 = (\rho(A^*A))^{1/2} = \sigma_1$, where σ_1 is the largest singular value of A and ρ is the spectral radius.
 - (b) Let $\kappa_2(A)$ be the two-norm condition number of the square, non-singular A. Prove that

$$\kappa_2(A) = \frac{\sigma_1}{\sigma_m}$$

where σ_1 and σ_m are the largest and smallest singular values of A, respectively.

- (c) Show that $\kappa_2(A) = 1$ if and only if A = rQ with $r \in \mathbb{R}$ and Q unitary.
- 3. (a) Given $A \in \mathbb{C}^{m \times n}$ with $m \ge n$, show that A^*A is nonsingular if and only if A has full rank.
 - (b) If $u, v \in \mathbb{C}^m$ and $A = uv^*$, show that $||A||_2 = ||u||_2 ||v||_2$.
- 4. (a) Prove that every square matrix A has a Schur factorization.
 - (b) If A is normal (so $A^*A = AA^*$) show that the triangular matrix in its Schur factorization is diagonal.
- 5. Assume $A \in \mathbb{R}^{m,m}$
 - (a) Prove that $\langle x, y \rangle_A = x^* A y$ is an inner product on \mathbb{R}^m if and only if A is symmetric and positive definite
 - (b) Assume now that A is symmetric and positive definite. If x_* is the solution to Ax = b and $\{p_1, \ldots, p_m\}$ is an orthonormal basis for \mathbb{R}^m with respect to \langle , \rangle_A and $x_* = \sum c_i p_i$, give a formula for the c_i .