1. (a) If P is a projector, prove that $\operatorname{null}(P) \cap \operatorname{range}(P)=\emptyset$ and $\operatorname{null}(P)=\operatorname{range}(I-P)$.
(b) Prove that P is an orthogonal projector if and only if it is Hermitian.
(c) If $q_{1}, \ldots q_{n}$ is an orthonornal basis for the subspace $V \subset \mathbb{C}^{m}$ with $m>n$, prove that the orthognal projector onto V is $Q Q^{*}$, where Q is the matrix whose columns are the q_{j}.
2. Assume $A \in \mathbb{C}^{m \times m}$.
(a) Prove that $\|A\|_{2}=\left(\rho\left(A^{*} A\right)\right)^{1 / 2}=\sigma_{1}$, where σ_{1} is the largest singular value of A and ρ is the spectral radius.
(b) Let $\kappa_{2}(A)$ be the two-norm condition number of the square, non-singular A. Prove that

$$
\kappa_{2}(A)=\frac{\sigma_{1}}{\sigma_{m}}
$$

where σ_{1} and σ_{m} are the largest and smallest singular values of A, respectively.
(c) Show that $\kappa_{2}(A)=1$ if and only if $A=r Q$ with $r \in \mathbb{R}$ and Q unitary.
3. (a) Given $A \in \mathbb{C}^{m \times n}$ with $m \geq n$, show that $A^{*} A$ is nonsingular if and only if A has full rank.
(b) If $u, v \in \mathbb{C}^{m}$ and $A=u v^{*}$, show that $\|A\|_{2}=\|u\|_{2}\|v\|_{2}$.
4. (a) Prove that every square matrix A has a Schur factorization.
(b) If A is normal (so $A^{*} A=A A^{*}$) show that the triangular matrix in its Schur factorization is diagonal.
5. Assume $A \in \mathbb{R}^{m, m}$
(a) Prove that $\langle x, y\rangle_{A}=x^{*} A y$ is an inner product on \mathbb{R}^{m} if and only if A is symmetric and positive definite
(b) Assume now that A is symmetric and positive definite. If x_{*} is the solution to $A x=b$ and $\left\{p_{1}, \ldots, p_{m}\right\}$ is an orthonormal basis for \mathbb{R}^{m} with respect to \langle,\rangle_{A} and $x_{*}=\sum c_{i} p_{i}$, give a formula for the c_{i}.

