First-year Analysis Examination Part One January 2018

Answer FOUR questions in detail. State carefully any results used without proof.

1. Let $(a_n : n \ge 0)$ be a bounded real sequence. For each $N \ge 0$ define $\bar{a}_N = \sup\{a_n : n \ge N\}$ and let $s = \inf\{\bar{a}_N : N \ge 0\}$. Prove: (i) if s < t then $a_n < t$ eventually, in the sense $(\exists N)(\forall n \ge N)(a_n < t)$; (ii) if s > r then $a_n > r$ frequently, in the sense $(\forall N)(\exists n \ge N)(a_n > r)$.

2. Let X be a metric space. Assume that there exists $\delta > 0$ such that the distance between distinct points of X is always δ or greater. Determine precisely which subsets of X are open, which closed, which compact and which connected.

3. Let $f : X \to \mathbb{R}$ have the property that if *a* is any real number then $U(a) = \{x : f(x) < a\}$ is an open subset of the *compact* metric space X. (i) Prove that f is bounded above on X.

(ii) Prove that $s = \sup\{f(x) : x \in X\}$ is a value of f.

For (ii): suppose s not a value and consider the function F = 1/(s - f).

4. Let $f : X \to Y$ be a bijection between metric spaces; assume that Y is complete and that f^{-1} is continuous.

(i) Show that if f is uniformly continuous then X is complete.

(ii) Show that if f is only continuous then X can fail to be complete.

5. Let $f : (a, b) \to \mathbb{R}$ be differentiable and assume that its derivative f' is bounded. Prove that the right-hand limit $\lim_{t\to a+} f(t)$ exists.