First-year Analysis Examination Part Two May 2018

Answer FOUR questions in detail. State carefully any results used without proof.

1. (i) Let $g_n \to g$ and $h_n \to h$ uniformly on X. Prove that if g and h are bounded, then $g_n h_n \to gh$ uniformly on X.

(ii) Let $f : [a, b] \to \mathbb{R}$ be continuous. By considering the square-root or otherwise, prove that if f is non-negative then there exists a sequence of *non-negative* polynomials converging uniformly to f on [a, b].

2. Let \mathcal{F} be an equicontinuous family of real-valued functions on the connected space X. By considering the set of points at which the family \mathcal{F} is bounded, prove that if \mathcal{F} is bounded at one point of X then it is bounded at all points of X.

3. $(f_n : n \ge 0)$ is a sequence of measurable real-valued functions. Prove that each of the following sets is measurable:

(a) the set A comprising all points ω for which the sequence of values $f_n(\omega)$ is eventually positive;

(b) the set B comprising all points ω for which the sequence of values $f_n(\omega)$ changes sign infinitely often.

4. $(\Omega, \mathcal{F}, \mu)$ is a measure space on which $(f_n : n \ge 0)$ is a sequence of Lebesgue-measurable functions converging uniformly to f. Prove that if $\mu(\Omega) < \infty$ then it follows that f is integrable and $\int_{\Omega} f_n d\mu \to \int_{\Omega} f d\mu$. Show by example that if $\mu(\Omega) = \infty$ then the same conclusion may not follow.

5. Let $(f_n : n \ge 0)$ be a uniformly-bounded sequence of Riemann-integrable functions on [a, b]. If $f_n \to 0$ pointwise, does it follow that $\int_a^b f_n \to 0$? Proof or counterexample required.