First-year Analysis Examination
 Part Two
 May 2018

Answer FOUR questions in detail.
State carefully any results used without proof.

1. (i) Let $g_{n} \rightarrow g$ and $h_{n} \rightarrow h$ uniformly on X. Prove that if g and h are bounded, then $g_{n} h_{n} \rightarrow g h$ uniformly on X.
(ii) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. By considering the square-root or otherwise, prove that if f is non-negative then there exists a sequence of non-negative polynomials converging uniformly to f on $[a, b]$.
2. Let \mathcal{F} be an equicontinuous family of real-valued functions on the connected space X. By considering the set of points at which the family \mathcal{F} is bounded, prove that if \mathcal{F} is bounded at one point of X then it is bounded at all points of X.
3. $\left(f_{n}: n \geqslant 0\right)$ is a sequence of measurable real-valued functions. Prove that each of the following sets is measurable:
(a) the set A comprising all points ω for which the sequence of values $f_{n}(\omega)$ is eventually positive;
(b) the set B comprising all points ω for which the sequence of values $f_{n}(\omega)$ changes sign infinitely often.
4. $(\Omega, \mathcal{F}, \mu)$ is a measure space on which $\left(f_{n}: n \geqslant 0\right)$ is a sequence of Lebesgue-measurable functions converging uniformly to f. Prove that if $\mu(\Omega)<\infty$ then it follows that f is integrable and $\int_{\Omega} f_{n} \mathrm{~d} \mu \rightarrow \int_{\Omega} f \mathrm{~d} \mu$. Show by example that if $\mu(\Omega)=\infty$ then the same conclusion may not follow.
5 . Let $\left(f_{n}: n \geqslant 0\right)$ be a uniformly-bounded sequence of Riemann-integrable functions on $[a, b]$. If $f_{n} \rightarrow 0$ pointwise, does it follow that $\int_{a}^{b} f_{n} \rightarrow 0$? Proof or counterexample required.
