First-year Analysis Examination
 Part Two
 January 2018

Answer FOUR questions in detail.
State carefully any results used without proof.

1. Let $f:[0,1] \rightarrow \mathbb{R}$ be Riemann-integrable. Prove that if the Riemann integral $\int_{0}^{1} f$ is nonzero then there exist $\delta>0$ and a nonempty open interval $I \subseteq[0,1]$ such that $|f| \geqslant \delta$ throughout I.
2. Let $f_{n}(t)=t^{n}(1-t)^{n}$ whenever $0 \leqslant t \leqslant 1$ and n is a positive integer. Does the sequence $\left(f_{n}: n>0\right)$ converge on $[0,1]$ pointwise? Uniformly? Justify.
3. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous. Assume that $\int_{0}^{1} f(t) e^{-n t} \mathrm{~d} t=0$ whenever n is a non-negative integer. Does it follow that f is identically zero? Does the answer change if the exponent $-n t$ is replaced by $+n t$? By $2 n t$? Justify.
4. Given that $\left(f_{n}: n \geqslant 0\right)$ is a sequence of measurable real-valued functions, explain why each of the following sets is (or is not) measurable:
(i) $X=\left\{\omega: f_{n}(\omega) \rightarrow \infty\right.$ as $\left.n \rightarrow \infty\right\}$;
(ii) $Y=\left\{\omega: f_{n}(\omega)^{2}<f_{n}(\omega)\right.$ for each $\left.n \geqslant 0\right\}$;
(iii) $Z=\left\{\omega: \sum_{n=0}^{\infty} f_{n}(\omega)\right.$ converges absolutely $\}$.

5 . Let $\left(f_{n}: n \geqslant 1\right)$ be a sequence of continuous functions from $[0,1]$ to $[0,1]$ and assume that this sequence converges to f pointwise. True or false (proof or counterexample)?
(i) f is Riemann-integrable and (Riemann integrals) $\int_{0}^{1} f_{n} \rightarrow \int_{0}^{1} f$;
(ii) f is Lebesgue-integrable and (Lebesgue integrals) $\int_{0}^{1} f_{n} \rightarrow \int_{0}^{1} f$.

