First-year Analysis Examination Part Two August 2018

Answer FOUR questions in detail. State carefully any results used without proof.

1. Let the sequence $(s_n)_{n=1}^{\infty}$ in [0,1] be uniformly distributed in the sense that if $0 \leq a \leq b \leq 1$ then

$$\lim_{k \to \infty} \frac{\#\{k \le n : s_k \in [a, b]\}}{n} = b - a$$

Let $f:[0,1] \to \mathbb{R}$ and prove that

$$\lim_{n \to \infty} \frac{f(s_1) + \dots + f(s_n)}{n} = \int_0^1 f(t) \mathrm{d}t$$

in each of the following cases:

(i) f is a step function (a finite linear combination of indicators of intervals);(ii) f is Riemann-integrable.

2. Fix $a \in \mathbb{R}$ and for each integer n > 0 write $f_n(t) = n^a t (1 - t^2)^n$ whenever $0 \leq t \leq 1$.

(i) Show that $(f_n)_{n=1}^{\infty}$ converges pointwise on [0, 1]; say to f.

(ii) For which values of a does $(f_n)_{n=1}^{\infty}$ converge uniformly on [0, 1]? Justify. (iii) For which values of a is it true that $\int_0^1 f_n \to \int_0^1 f$? Justify.

3. Let $f: [1, \infty) \to \mathbb{R}$ be continuous and satisfy $\lim_{t\to\infty} f(t) = A \in \mathbb{R}$. Prove that there is a sequence $(p_n)_{n=0}^{\infty}$ of polynomials such that $p_n(1/t)$ converges to f(t) uniformly for $t \ge 1$.

4. Let $(f_n)_{n=1}^{\infty}$ be a sequence of real-valued measurable functions. Prove that each of the following sets is measurable:

(i) $B = \{ \omega : (f_n(\omega))_{n=1}^{\infty} \text{ has no biggest term} \};$

(ii) $C = \{\omega : \cos(f_n(\omega)) > 0 \text{ for each } n > 0\};$

(iii) $D = \{\omega : (f_n(\omega))_{n=1}^{\infty} \text{ does not converge to a rational number}\}.$

5. State the Monotone Convergence Theorem. Use it to prove the following: let $(f_n)_{n=1}^{\infty}$ be a sequence of non-negative integrable functions with pointwise limit f; if $\int f_n d\mu \leq M < \infty$ for each n then f is integrable and $\int f d\mu \leq M$.