1st Year Topology Exam January 4th, 2013

Work the following problems and show all work. Support all statements to the best of your ability. Work each problem on a separate sheet of paper.

1. Show that the set of functions $f:\mathbb{Z}\to\mathbb{Z}$ that are eventually constant is countable.

2. Let X be a connected metric space having more than one point. Can X be countable?

3. Show that every continuous map $f : [0,1] \to [0,1]$ has a fixed point. Is this true for for continuous maps

(a) $f: (0,1) \to (0,1)$?

(b) $f : [0,1] \to [0,1)$?

4. Let A be a proper subset of X and let B be a proper subset of Y. If X and Y are connected, show that $(X \times Y) - (A \times B)$ is connected.

5. Let $f: X \to X$ be a map of a complete metric space to itself that satisfies the following condition: There exists $\lambda < 1$ such that $d(f(x), f(y)) \leq \lambda d(x, y)$. Prove that f is continuous. Show that f has a fixed point and the fixed point is unique.

Answer the following with complete definitions or statements or short proofs.

6. State the Intermediate Value Theorem.

7. Does there exist a continuous surjective map from the 2-sphere S^2 to the interval (0, 1)?

8. Does there exist a continuous injective map from the 2-sphere S^2 to the interval (0, 1)?

9. State the Cantor-Schroeder-Bernstein Theorem.

10. Is every connected space path connected?

11. What is a basis of a topology? Does the set of all half-open intervals $\{(a, b], [b, c) \mid a < b, c < d\}$ form a basis of a topology on \mathbb{R} ? 12. State the Extreme Value Theorem.

13. Is \mathbb{R}^{ω} connected in the uniform topology?

14. Is the subspace $X = \{(x, y) \in \mathbb{R}^2 \mid y = \frac{1}{x}\}$ compact? locally compact?

1

15. Describe all connected subsets of \mathbb{R} .