FIRST-YEAR EXAM - SECOND-SEMESTER TOPOLOGY

Answer all questions and work all problems. Each problem is worth the points allotted.

Problem 1. (5 points) Let n > 1. Suppose that $f, g : X \to S^n$ are continuous such that f(x) and g(x) are not antipodal for all $x \in X$. Show that f and g are homotopic.

Problem 2. (5 points) Show that $\pi_1(S^n, 1) = 0$ for all n > 1.

Problem 3. (5 points) Show that $\pi_1(S^1, 1) = \mathbb{Z}$.

Problem 4. (5 points) Show that the disk, $D^2 = \{z \in \mathbb{C} \mid ||z|| \le 1\}$ has the fixed point property.

Problem 5. (5 points) Consider the matrix $M = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}$. This represents a group homomorphism $M : Z^2 \to Z^2$. Show that there is a map $f : \mathbb{T}^2 \to \mathbb{T}^2$ such that $f_* = M$ where $f_* : \pi_1(\mathbb{T}^2) \to \pi_1(\mathbb{T}^2)$ is the homomorphism induced by f on the fundamental group.

Problem 6. (5 points) Consider three loops $f, g, h : [0, 1] \to (X, x_0)$. Show that $(f \circ g) \circ h$ is homotopic to $f \circ (g \circ h)$ where \circ denotes concatenation of loops.

Problem 7. (5 points) Let n > 1. Let $P^n = S^n/D$ where D identifies x with its antipode for all $x \in S^n$. Show that $\pi_1(P^n, x_0) \cong \mathbb{Z}_2$.

Problem 8. (5 points) Describe a CW-complex X such that $\pi_1(X, x_0) \cong \mathbb{Z}_3$.

Problem 9. (5 points) Suppose that $\pi_1(X, x_0) \cong \mathbb{Z}_2$ and that $\pi_1(Y, y_0) \cong \mathbb{Z}_5$. Show that $\pi_1(X \times Y, (x_0, y_0)) \cong \mathbb{Z}_{10}$.

Problem 10. (5 points) Suppose that X and Y are connected. Show that $X \times Y$ is connected.

Problem 11. (5 points) Let n > 1. Let $A \subset \mathbb{R}^n$ be a countable set. Show that $\mathbb{R}^n \setminus A$ is arcwise connected.

Problem 12. (5 points) Let $X = S^1 \vee S^1$. Show that $\pi_1(X) \cong \mathbb{Z} * \mathbb{Z}$.

Problem 13. (40 points) State the following theorems.

Seifert-van Kampen Theorem.

The Urysohn Metrization Theorem

The Urysohn Lemma

 $\mathbf{2}$

The Tietze Extension Theorem

The Brouwer Fixed Point Theorem

The Fundamental Theorem of Algebra

The Jordan Curve Theorem

The Arcwise Connectedness Theorem

The Hahn-Mazurkiewicz Theorem