FIRST-YEAR EXAM - FIRST-SEMESTER TOPOLOGY

Answer all questions and work all problems. Each problem is worth the points allotted.

Problem 1. (10 points) Suppose that $f: X \to Y$ is continuous and onto. Show that if X is compact, then Y is also compact.

Problem 2. (10 points) Suppose that $A \subset X$ is connected. Show that the closure of A, \overline{A} , is also connected..

Problem 3. (10 points) State and prove the Banach Fixed-Point Theorem.

Problem 4. (10 points) Suppose that X is a compact metric space. Show that if $\{x_i\}$ is a sequence of points in X, then there is a point $z \in X$ and a subsequence, $\{x_{i_j}\}$, such that $x_{i_j} \to z$.

Problem 5. (10 points) Give an example of a sequence of functions $f_i : [0, 1] \to [0, 1]$ such that $f_i(x) \to g(x)$ for all $x \in [0, 1]$, but such that $g : [0, 1] \to [0, 1]$ is not continuous.

Problem 6. (10 points) Suppose that X is a set and that $f: X \to 2^X$. Show that f cannot be onto.

Problem 7. (10 points) Suppose that X is a complete metric space that is countably infinite. Show that X has an isolated point, i.e., there is a point $x \in X$ such that $\{x\}$ is open in X.

Answer the following with complete definitions or statements or short proofs.

Problem 8. (5 points) State The Urysohn Lemma.

Problem 9. (5 points) Show that [0, 1) is not compact.

Problem 10. (5 points) State the Tietze Extension Theorem.

Problem 11. (5 points) State the Tychonoff Theorem.

Problem 12. (5 points) State the Alexander Subbase Theorem.

Problem 13. (5 points) Give an example of a Hausdorff space that is not normal.