FIRST-YEAR TOPOLOGY EXAM, JANUARY 2015

NAME:

Work the following problems and show all work. Support all statements to the best of your ability. Work each problem on a separate sheet of paper with your name on the sheet.

Problem 1. Show that there is no continuous function $f: [0,1] \rightarrow [0,1)$ which is onto.

Problem 2. Show that there is no continuous function $f : \mathbb{R} \to \{0, 1\}$ which is onto.

Problem 3. Let X be a metric space and let $f : X \to X$ be a continuous function. Suppose that there is a point $x_0 \in X$ such that $f^n(x_0) \to z$ as $n \to \infty$. Show that f(z) = z.

Problem 4. Show that if $A \subset \mathbb{R}$ is connected, then A is an interval.

Problem 5. Prove that if X is compact Hausdorff, then X is a normal space.

Problem 6. State and prove the *Contraction Mapping Theorem*.

Problem 7. Suppose that X is a complete metric space that is countably infinite. Show that X has an isolated point.

Answer the following with complete definitions or statements or short proofs.

Problem 8. State the Intermediate Value Theorem.

Problem 9. State the Urysohn Lemma.

Problem 10. State the *Tietze Extension Theorem*.

Problem 11. State the *Baire Category Theorem*.

Problem 12. Give an example of a connected space X that is not path connected.

Problem 13. Let $n \ge 2$. Suppose that A is a countable subset of \mathbb{R}^n . Let $X = \mathbb{R}^n \setminus A$. Is X arcwise connected?

Problem 14. Suppose that r > 0 and that $B_r(x)$ is a ball of radius r centered at x in \mathbb{R}^n . Show that $B_r(x)$ is connected.

Problem 15. Show that [0,1] is uncountable.