1. Prove that every square matrix A has a Schur factorization.
2. Given a matrix $A \in \mathbb{C}^{m \times n}$, let

$$
B=\left(\begin{array}{cc}
0 & A^{*} \\
A & 0
\end{array}\right) \quad \text { and } C=A^{*} A
$$

(a) Show that the singular values of A are the absolute values of eigenvalues of B.
(b) Show that the singular values of A are the square roots of eigenvalues of C.
(c) Assume now that A is square and invertible. Compute the two-norm condition numbers of B and C in terms of the two-norm condition number of A.
(d) If A has condition number bigger than one, which has the larger condition number, B or C ?
3. (a) Compute $\operatorname{det}\left(\lambda I+u v^{*}\right)$ when $\lambda \in \mathbb{C}, I$ is the $m \times m$ identity matrix, and $u, v \in \mathbb{C}^{m}$.
(b) Prove necessary and sufficient conditions for $I+u v^{*}$ to be nonsingular and when it is, give a formula for its inverse.
4. (a) Given Cholesky decomposition of the Hermitian positive definite matrix $A=R^{*} R$, prove that $\|R\|_{2}=\left\|R^{*}\right\|_{2}=\|A\|_{2}^{1 / 2}$.
(b) Now assume that B is a matrix that can be expressed as $B=T^{*} T$ for some upper triangular matrix T. Show that B is Hermitian and positive semi-definite, i.e. $x^{*} B x \geq 0$ for all x.
5. Let $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$ be an orthonormal subset of \mathbb{C}^{m}. Show that

$$
P=\sum_{i=1}^{n} q_{i} q_{i}^{*}
$$

is an orthogonal projector with range equal to the span of $\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$.

