1. Assume $A \in \mathbb{R}^{m, n}$ with $m \geq n, \operatorname{rank}(A)=n$ and $b \in \mathbb{R}^{n}$.
(a) Define the least squares solution to $A x=b$.
(b) Derive the normal equations for the least squares problem.
(c) Prove that $A^{T} A$ is invertible.
(d) Prove that the unique solution to the least squares problem is $\left(A^{T} A\right)^{-1} A^{T} b$.
(e) Describe how to solve the least squares problem using the QR decomposition of A.
2. (a) Compute $\operatorname{det}\left(\lambda I+u v^{*}\right)$ when $\lambda \in \mathbb{C}, I$ is the $m \times m$ identity matrix, and $u, v \in \mathbb{C}^{m}$.
(b) Prove necessary and sufficient conditions for $I+u v^{*}$ to be nonsingular and when it is, give a formula for its inverse.
3. (a) If P is a projector, prove that null $(P) \cap \operatorname{range}(P)=\emptyset$ and null $(P)=\operatorname{range}(I-P)$.
(b) Prove that P is an orthogonal projector if and only if it is Hermitian.
(c) If $q_{1}, \ldots q_{n}$ is an orthonornal basis for the subspace $V \subset \mathbb{C}^{m}$ with $m>n$, prove that the orthognal projector onto V is $Q Q^{*}$, where Q is the matrix whose columns are the q_{j}.
4. (a) Prove that $\|A\|_{F}=\operatorname{trace}\left(A^{*} A\right)^{1 / 2}$.
(b) Prove that $\|A\|_{F}=\left(\sum \sigma_{i}^{2}\right)^{1 / 2}$, where $\left\{\sigma_{i}\right\}$ are the singular values of A counted with multiplicity.
(c) If both A and U are in $\mathbb{C}^{m, m}$ and U is unitary, prove that $\|U A\|_{F}=\|A U\|_{F}=$ $\|A\|_{F}$.
5. Define a normal matrix and prove that the following are equivalent.
(a) A is normal.
(b) A is unitarily diagonalizable.
(c) $\|A\|_{F}=\left(\sum\left|\lambda_{i}\right|^{2}\right)^{1 / 2}$, where $\left\{\lambda_{i}\right\}$ are the eigenvalues of A counted with multiplicity.
