Numerical Analysis Qualifying Exam (January 14, 2013).

1. Suppose that $A \in \mathbb{C}^{n \times n}$ is Hermitian with λ_1 and λ_n the smallest and largest eigenvalues of A respectively. Show that

$$\lambda_1 \|x\|^2 \le x^{\mathsf{T}} A x \le \lambda_n \|x\|^2$$

for all $x \in \mathbb{C}^n$.

- 2. (a) Suppose p and $q \in \mathbb{R}$ with p and q positive and $p^{-1} + q^{-1} = 1$. Show that for any matrix $A \in \mathbb{C}^{m \times n}$, we have $||A||_p = ||A^*||_q$, where A^* is the conjugate transpose of A.
 - (b) Prove that

$$||A||_2^2 \le ||A||_p ||A||_q$$

for any $A \in \mathbb{C}^{m \times n}$ and any positive p and $q \in \mathbb{R}$ with $p^{-1} + q^{-1} = 1$.

(c) Prove that for any $p \ge 1$ and any diagonal matrix $D \in \mathbb{C}^{n \times n}$, we have

$$||D||_p = \max\{|d_{ii}| : 1 \le i \le n\}.$$

- 3. (a) Show that the eigenvalues of a projector are either 0 or 1.
 - (b) Show that a projector P is orthogonal if and only if $P = P^*$.
- 4. Show that the element of largest magnitude in a Hermitian, positive definite matrix lies on the diagonal.
- 5. Suppose that $A \in \mathbb{C}^{n \times n}$ is an invertible matrix, $u \in \mathbb{C}^n$, and $v \in \mathbb{C}^n$.
 - (a) Show that

$$\det(A - uv^*) = (1 - v^*A^{-1}u) \det A.$$

(b) Suppose that A is a real diagonal matrix and u = v with $u_i \neq 0$ for each i. Show that the eigenvalues of $A - uu^*$ are the roots of

$$\sum_{i=1}^{n} \frac{|u_i|^2}{a_{ii} - \lambda} = 1.$$