1. Suppose that $A \in \mathbb{C}^{n \times n}$ is Hermitian with λ_{1} and λ_{n} the smallest and largest eigenvalues of A respectively. Show that

$$
\lambda_{1}\|x\|^{2} \leq x^{\top} A x \leq \lambda_{n}\|x\|^{2}
$$

for all $x \in \mathbb{C}^{n}$.
2. (a) Suppose p and $q \in \mathbb{R}$ with p and q positive and $p^{-1}+q^{-1}=1$. Show that for any matrix $A \in \mathbb{C}^{m \times n}$, we have $\|A\|_{p}=\left\|A^{*}\right\|_{q}$, where A^{*} is the conjugate transpose of A.
(b) Prove that

$$
\|A\|_{2}^{2} \leq\|A\|_{p}\|A\|_{q}
$$

for any $A \in \mathbb{C}^{m \times n}$ and any positive p and $q \in \mathbb{R}$ with $p^{-1}+q^{-1}=1$.
(c) Prove that for any $p \geq 1$ and any diagonal matrix $D \in \mathbb{C}^{n \times n}$, we have

$$
\|D\|_{p}=\max \left\{\left|d_{i i}\right|: 1 \leq i \leq n\right\} .
$$

3. (a) Show that the eigenvalues of a projector are either 0 or 1 .
(b) Show that a projector P is orthogonal if and only if $P=P^{*}$.
4. Show that the element of largest magnitude in a Hermitian, positive definite matrix lies on the diagonal.
5. Suppose that $A \in \mathbb{C}^{n \times n}$ is an invertible matrix, $u \in \mathbb{C}^{n}$, and $v \in \mathbb{C}^{n}$.
(a) Show that

$$
\operatorname{det}\left(A-u v^{*}\right)=\left(1-v^{*} A^{-1} u\right) \operatorname{det} A
$$

(b) Suppose that A is a real diagonal matrix and $u=v$ with $u_{i} \neq 0$ for each i. Show that the eigenvalues of $A-u u^{*}$ are the roots of

$$
\sum_{i=1}^{n} \frac{\left|u_{i}\right|^{2}}{a_{i i}-\lambda}=1
$$

