First-year Analysis Examination
 Part Two
 August 2017

Answer FOUR questions in detail.
State carefully any results used without proof.

1. Let $f:[0,1] \rightarrow[0,1)$ be continuous. Decide whether it follows that

$$
\int_{0}^{1} \frac{1}{1-f(t)} \mathrm{d} t=\sum_{n=0}^{\infty} \int_{0}^{1} f(t)^{n} \mathrm{~d} t
$$

giving proof or counterexample as appropriate. [Note the intervals carefully.]
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be nonconstant; for each positive integer n and each real t define $f_{n}(t)=f(n t)$. Prove that there exists no $\varepsilon>0$ such that $\left(f_{n}\right)_{n=1}^{\infty}$ is equicontinuous on the interval $(-\varepsilon, \varepsilon)$.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Either (i) show that there exists a sequence of polynomials converging pointwise to f on \mathbb{R} or (ii) show that there need not exist a sequence of polynomials converging uniformly to f on \mathbb{R}.
4. Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of measurable real-valued functions. Prove that each of the following sets is measurable:
(i) $A=\left\{\omega: f_{n}(\omega) \rightarrow \infty\right.$ as $\left.n \rightarrow \infty\right\}$;
(ii) $B=\left\{\omega: f_{n}(\omega)\right.$ is eventually irrational $\}$;
(iii) $C=\left\{\omega: f_{n}(\omega)>0\right.$ for infinitely many $\left.n\right\}$.
5. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be Lebesgue integrable and assume that $f(t) \rightarrow 1$ as $t \rightarrow \infty$. Prove that for each positive integer n we may define

$$
a_{n}=\frac{1}{n} \int_{0}^{\infty} e^{-t / n} f(t) \mathrm{d} t \in \mathbb{R}
$$

and prove that $a_{n} \rightarrow 1$ as $n \rightarrow \infty$.
Suggestion: Say $|f(t)-1| \leqslant \varepsilon$ whenever $t \geqslant A$ and split the integral.

