First-year Analysis Examination Part Two January 2016

Answer FOUR questions in detail. State carefully any results used without proof.

1. Let $f_n : [a, b] \to \mathbb{R}$ be continuously differentiable and let f'_n converge to g uniformly on [a, b]. Prove that if f_n converges pointwise at a then f_n converges uniformly on [a, b] to a continuously differentiable function f such that f' = g.

2. Let f be a real-valued function on [a, b]. For each of the following statements, give a proof or a counterexample, as appropriate.

(i) If f is *Riemann* integrable with strictly positive *Riemann* integral over [a, b] then f is strictly positive on some nonempty open interval.

(ii) The same statement, with *Riemann* replaced by *Lebesgue* throughout.

3. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. For $a \leq b$ and for N a natural number, consider the statement:

'if $\int_a^b f(t)t^{2n+1}dt = 0$ for each integer $n \ge N$ then f = 0 on [a, b]'. Argue the truth or falsity of this statement in the following cases: (i) N = 0, [a, b] = [0, 1]; (ii) N = 1, [a, b] = [0, 1]; (iii) N = 0, [a, b] = [-1, 1].

4. Let f_n be a sequence of measurable real-valued functions on the measurable space (Ω, Σ) . Prove that each of the following sets is measurable: (i) the set P comprising all $\omega \in \Omega$ such that $f_n(\omega)$ converges to an irrational number; (ii) the set Q comprising all $\omega \in \Omega$ such that $f_n(\omega)$ converges to a rational number; (iii) the set R comprising all $\omega \in \Omega$ such that $f_n(\omega)$ converges to a real number.

5. Let f be an integrable function on the measure space (Ω, Σ, μ) . Prove that for each $\varepsilon > 0$ there exists a $\delta > 0$ such that if $A \in \Sigma$ and $\mu(A) < \delta$ then $\int_A |f| d\mu < \varepsilon$.