First-year Analysis Examination Part One August 2017

Answer FOUR questions in detail. State carefully any results used without proof.

1. A and B are nonempty sets of real numbers such that: (i) $A \cup B = \mathbb{R}$ and (ii) a < b whenever $a \in A$ and $b \in B$. Prove that there exists a unique $s \in \mathbb{R}$ such that $(-\infty, s) \subseteq A$ and $(s, \infty) \subseteq B$.

2. Let X be a metric space, of which A and B are compact subsets; define $\delta := \inf\{d(a,b) : a \in A, b \in B\}$. Prove that there exist $a_0 \in A$ and $b_0 \in B$ such that $d(a_0, b_0) = \delta$. Must a_0 and b_0 be unique? Proof or counterexample, as appropriate.

3. Let f be a surjective map from the precompact metric space X onto the metric space Y. Prove that if f is *uniformly* continuous then Y is also precompact. Show by example that if *uniformly* is dropped then Y can fail to be precompact.

4. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Can it be the case that for each $t \in \mathbb{R}$, the value f(t) is irrational iff t itself is rational? If yes, give an example; if no, give a proof.

5. Let $f: (0, \infty) \to \mathbb{R}$ be differentiable and assume that $f(t) \to \ell \in \mathbb{R}$ as $t \to \infty$. Prove that if $f'(t) \to L \in \mathbb{R}$ as $t \to \infty$ then L = 0.