First-year Analysis Examination Part One May 2017

Answer FOUR questions in detail. State carefully any results used without proof.

1. Let $f:[0,1] \to [0,1]$ be increasing. By considering the set

$$A = \{t \in [0, 1] : t \le f(t)\}$$

or otherwise, prove that there exists $a \in [0, 1]$ such that f(a) = a.

2. Let X be a metric space, of which U is an open subset and A an arbitrary subset. Prove that

 $U \cap \overline{A} \subseteq \overline{U \cap A}.$

3. Let $f: X \to Y$ be a map between metric spaces. Prove that if $(f(x_n))_{n=0}^{\infty}$ converges in Y whenever $(x_n)_{n=0}^{\infty}$ converges in X then f is continuous.

[Note: it is **not** given that $f(x_n) \to f(x)$ whenever $x_n \to x$.]

4. Let $B \subseteq \mathbb{R}$ be bounded and $f : B \to \mathbb{R}$ uniformly continuous. True or false: $f(B) \subseteq \mathbb{R}$ is bounded? Give a proof or counterexample, as appropriate.

5. Let $f: (-a, a) \to \mathbb{R}$ be continuous everywhere and differentiable at each nonzero point. Show that if the limit $\ell = \lim_{t\to 0} f'(t)$ exists then f is in fact continuously differentiable at 0 with $f'(0) = \ell$.