First-year Analysis Examination Part One January 2016

Answer FOUR questions in detail. State carefully any results used without proof.

1. For each λ in the nonempty index set Λ let X_{λ} be a nonempty subset of \mathbb{R} and assume that the union $X = \bigcup \{X_{\lambda} : \lambda \in \Lambda\}$ is bounded above. Is $\sup \{\sup X_{\lambda} : \lambda \in \Lambda\}$ defined? Does it equal $\sup X$? Prove.

2. Let A be a subset of the metric space M and for $\delta > 0$ define

$$A_{\delta} = \{ x \in M : (\exists a \in A) \ d(x, a) < \delta \}.$$

Prove (i) that A_{δ} is open and (ii) that $\bigcap_{\delta>0} A_{\delta} = \overline{A}$.

3. Let $K_0 \supseteq K_1 \supseteq \ldots$ be a decreasing sequence of nonempty subsets of the metric space M.

(i) Prove that if each K_n is compact then $\bigcap_{n \ge 0} K_n$ is nonempty.

(ii) Show by example that if each K_n is closed then $\bigcap_{n \ge 0} K_n$ can be empty.

4. Let $f: X \to Y$ be a continuous bijection, with X complete. Prove that if f^{-1} is *uniformly* continuous then Y is complete. Give an example to show that dropping *uniformly* can jeopardize this conclusion.

5. For a differentiable function $f:(0,\infty)\to\mathbb{R}$ consider the implications:

(i) $\lim_{t\to\infty} f'(t) = 0 \Rightarrow \lim_{t\to\infty} (f(t)/t) = 0;$

(ii) $\lim_{t\to\infty} (f(t)/t) = 0 \Rightarrow \lim_{t\to\infty} f'(t) = 0.$

One is true and the other is false; prove the true and give a counterexample for the false.