MAA 5229 First-Year Exam. May 2016

Do exactly four problems. Work should be presented in a logical fashion in order to receive full credit.

1. Let $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$ be convergent at $x=2$ where the c_{n} are real. Prove that

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} n c_{n} x^{n-1}, \quad|x|<2 .
$$

2. Let f be a real valued Riemannian integrable function on $[0,1]$ and let $F(x)=\int_{0}^{x} f(t) d t$. Prove $F^{\prime}(x)=f(x)$ for almost all $x \in[0,1]$.
3. Let f be real and continuous on $[0,1]$. Prove, if $\int_{0}^{1} f(x) x^{n} d x=0$ for all $n=0,1,2, \ldots$, then $f \equiv 0$ on $[0,1]$.
4. Let f_{n} be a sequence of functions defined on $[0,1]$. Suppose there exists an $\alpha \in(0,1)$ and positive number M such that $\left|f_{n}(0)\right| \leq M$ and $\left|f_{n}(x)-f_{n}(y)\right| \leq|x-y|^{\alpha}$ for all n and $x, y \in[0,1]$. Prove there is a subsequence $f_{n_{k}}$ of f_{n} converging (uniformly on $[0,1]$) to a function f that satisfies $|f(x)-f(y)| \leq|x-y|^{\alpha}$ for all $x, y \in[0,1]$.
5. State Fatou's Theorem and give an example to show the statement can be false if the functions in the sequence are not assumed non-negative.
