MAA 5229 First-Year Exam. May 2016

Do exactly four problems. Work should be presented in a logical fashion in order to receive full credit.

1. Let $f(x) = \sum_{n=0}^{\infty} c_n x^n$ be convergent at x = 2 where the c_n are real. Prove that

$$f'(x) = \sum_{n=1}^{\infty} nc_n x^{n-1}, \quad |x| < 2.$$

- 2. Let *f* be a real valued Riemannian integrable function on [0,1] and let $F(x) = \int_0^x f(t)dt$. Prove F'(x) = f(x) for almost all $x \in [0,1]$.
- 3. Let f be real and continuous on [0, 1]. Prove, if $\int_0^1 f(x)x^n dx = 0$ for all n = 0, 1, 2, ..., then $f \equiv 0$ on [0, 1].
- 4. Let f_n be a sequence of functions defined on [0,1]. Suppose there exists an $\alpha \in (0,1)$ and positive number M such that $|f_n(0)| \le M$ and $|f_n(x) f_n(y)| \le |x y|^{\alpha}$ for all n and $x, y \in [0,1]$. Prove there is a subsequence f_{n_k} of f_n converging (uniformly on [0,1]) to a function f that satisfies $|f(x) f(y)| \le |x y|^{\alpha}$ for all $x, y \in [0,1]$.
- 5. State Fatou's Theorem and give an example to show the statement can be false if the functions in the sequence are not assumed non-negative.