First-Year Analysis Examination, Part Two January 2016

Do *exactly* two problems from Part A and two problems from part B. Answer each question on a separate sheet of paper. Write solutions in a neat and logical fashion, giving complete reasons for all steps.

Part A

- 1. Let $f_n : X \to \mathbb{R}$ be a uniformly convergent sequence of continuous functions on a compact metric space X. Prove that the set $\{f_n\}$ is equicontinuous on X.
- 2. Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series which converges for all $x \in \mathbb{R}$. State and prove the theorem concerning the uniform convergence of the series on finite intervals [a, b]. Must the series converge uniformly on all of \mathbb{R} ? Prove, or give a counterexample.
- 3. Suppose $f \ge 0$, f is continuous on [a, b], and $\int_a^b f(x) dx = 0$. Prove that f(x) = 0 for all $x \in [a, b]$.

Part B

- 1. Let $f_n : [0,1] \to \mathbb{R}$ be a sequence of continuous functions. Prove that $g = \limsup f_n$ and $h = \liminf f_n$ are Lebesgue measurable.
- 2. For each of the following, either prove or give a counterexample (*m* denotes Lebesgue measure on \mathbb{R} ; assume all functions are measurable):
 - a) If f_n is integrable for all $n, f_n \to f$ uniformly on \mathbb{R} and f is integrable, then $\int_{\mathbb{R}} f_n dm \to \int_{\mathbb{R}} f dm$.
 - b) If $f_n \to f$ uniformly on [0, 1] and f is integrable, then $\int_0^1 f_n \, dm \to \int_0^1 f \, dm$.
 - c) Suppose $f_n \ge 0$ and $\int_0^1 f_n dm = 1$ for all n. If $f_n \to f$ pointwise, then $\int_0^1 f dm \le 1$.
- 3. State the monotone convergence theorem and Fatou's theorem, and use the former to prove the latter.