Do exactly **2** problems from Part A and **2** problems from Part B. Work must be presented in a neat and logical fashion in order to receive credit. Do not leave any gaps. When a theorem is used in a proof it must be precisely stated.

Part A

- 1. For $n \ge 1$ and 0 < t < 1, let $f_n(t) = t^n$. Prove that:
 - a) (f_n) converges uniformly on each compact subset of (0, 1),
 - b) (f_n) does not converge uniformly on (0, 1).
- 2. Suppose \mathcal{F} is an equicontinuous family of real-valued functions on [0, 1], such that

$$\sup_{f \in \mathcal{F}} |f(0)| = M < +\infty.$$

Prove that \mathcal{F} is uniformly bounded (that is, that $\sup_{f \in \mathcal{F}} \sup_{x \in [0,1]} |f(x)| < +\infty$).

3. Prove that every monotone function $f:[a,b] \to \mathbb{R}$ is Riemann integrable.

Part B

- 1. State Fatou's lemma and use it to prove the Dominated Convergence Theorem.
- 2. Let (f_n) be a sequence of real-valued measurable functions on a measurable space (X, \mathcal{M}) . Prove that each of the following subsets of X is measurable:
 - a) $\{x \in X : \text{ the sequence } (f_n(x)) \text{ is unbounded } \}.$
 - b) $\{x \in X : \text{ the sequence } (f_n(x)) \text{ is strictly increasing } \}.$
- 3. Let $g: [0,1] \times [0,1] \to \mathbb{R}$ be a function with the following properties:
 - i) $|g(x,t)| \leq 1$ for all x and t,
 - ii) for each t, the function $x \to g(x, t)$ is continuous on [0, 1], and
 - iii) for each x, the function $t \to g(x, t)$ is continuous on [0, 1].

Prove that the function h defined by

$$h(x) = \int_0^1 g(x,t) \, dt$$

is continuous on [0, 1].