Do exactly **2** problems from Part A and **2** problems from Part B. Work must be presented in a neat and logical fashion in order to receive credit. Do not leave any gaps. When a theorem is used in a proof it must be precisely stated.

Part A

- 1. Let $\sum_{n=0}^{\infty} c_n x^n$ be a pwer series with finite radius of convergence R. Assume that the c_n and x are real valued. Let $\epsilon > 0$. State and prove the theorem concerning the uniform convergence of $\sum_{n=0}^{\infty} c_n x^n$ on $[-R + \epsilon, R \epsilon]$.
- 2. Let $\{f_n\}$ be a pointwise bounded sequence of complex functions on a countable set E. Prove that there exists a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ such that $\{f_{n_k}(x)\}$ converges for each $x \in E$.
- 3. Let $\{f_n\}$ be a uniformly bounded sequence of Riemann integrable functions on [a, b]. Let

$$F_n(x) = \int_a^b f_n(t) dt, \quad a \le x \le b.$$

Prove that there exists a subsequence $\{F_{n_k}\}$ which converges uniformly on [a, b].

Part B

- 1. Let *E* be a Lebesgue measurable subset of [0, 1], with Lebesgue measure m(E). If $0 \le \alpha \le m(E)$, show that there exists a Lebesgue measurable subset $F \subset E$ such that $m(F) = \alpha$. (*Hint:* Examine the function $f(x) = m(E \cap [0, x])$ on [0, 1].)
- 2. Let $E \subset \mathbb{R}$ be Lebesgue measurable and suppose $m(E) < \infty$. It is known that for each $\epsilon > 0$ there is a closed set $F_{\epsilon} \subset E$ such that $m(E \setminus F_{\epsilon}) < \epsilon$. Show that F_{ϵ} can be chosen to be a compact set.
- 3. Let (X, Σ, μ) be a measure space and assume that f is μ -integrable. Prove that for $\epsilon > 0$ there exists a $\delta > 0$ such that $\left| \int_A f \, d\mu \right| < \epsilon$, whenever $A \in \Sigma$ and $\mu(A) < \delta$.