MAA 5228 First-Year Exam. January 2016

Do exactly four problems. Work should be presented in a logical fashion in order to receive full credit.

1. Let $A_{1}, \ldots, A_{n}, \ldots$ be subsets of a metric space X. If $B=\cup_{i=1}^{n} A_{n}$, prove that $\bar{B}=\cup_{i=1}^{n} \bar{A}_{i}$ where \bar{B} stands for the closure of B. If $C=\cup_{n=1}^{\infty} A_{n}$, prove that $\cup_{i=1}^{\infty} \bar{A}_{i} \subset \bar{C}$.
2. Let f be a mapping from B_{1} to itself, where B_{1} is the unit ball in $\mathbb{R}^{n}(n \geq 1)$. Let $R(f)$ be the range of f in B_{1}. Prove that f is continuous if and only if for any open set V in B_{1}, $f^{-1}(V \cap R(f))$ is also open. Your reasoning should be based on the following definition of continuity: f is called to be continuous at x if for any given $\varepsilon>0$, there exists $\delta>0$ such that all $y \in B(x, \boldsymbol{\delta})$ (the ball centered at x with radius $\boldsymbol{\delta}$) satisfies $|f(y)-f(x)|<\varepsilon$.
3. Let K be a compact subset of \mathbb{R}^{n} and F be a closed subset of $\mathbb{R}^{n}(n \geq 1)$. Suppose $K \cap F=\emptyset$, prove that

$$
\operatorname{distance}(K, F):=\inf _{x \in K, y \in F}|x-y|>0 \text {. }
$$

Moreover, there exist $x_{0} \in K$ and $y_{0} \in F$ such that $\left|x_{0}-y_{0}\right|=\operatorname{distance}(K, F)$.
4. Let f be a monotone function on $(0,1)$. Prove that the number of points where f is discontinuous is at most countable.
5. Let f be continuous function from $[0,2]$ to $[0,2]$. Prove that f has a fixed point in $[0,2]$. Give an example to show that if f is not continuous, the conclusion may not hold.
6. Suppose $\sum_{n=1}^{\infty} a_{n}$ is convergent and every $a_{n} \geq 0(n=1, \ldots, \infty)$, prove that $\sum_{n=1}^{\infty} \frac{\sqrt{a_{n}}}{n^{2 / 3}}$ is convergent. Give an example to show that $\sum_{n=1}^{\infty} \frac{a_{n}^{\frac{1}{4}}}{n^{\frac{2}{3}}}$ could be divergent.

