# First-Year Examination Analysis, Part One <br> January 2014 

DO ONLY 4 PROBLEMS OF THE 6. PRINT NAME ON EACH SHEET. Work must be presented in a neat and logical fashion to receive credit. Do not leave any gaps. State clearly any theorems used in proofs.

1. Let $F$ be a closed subset of the reals $\mathbb{R}$ with the usual topology. Show $F$ is a countable union of compact sets.
2. Let $E$ be a nonempty subset of a metric space. State the definition of the distance $\rho_{E}(x)$ of a point $x$ to $E$. Characterize $\bar{E}$ in terms of $\rho_{E}$, where $\bar{E}$ is the closure of $E$.
3. (a) Let $f$ be a continuous function from a compact metric space $X$ into a metric space $Y$. Prove $f(X)$ is compact.
(b) Assume the setting in (a) with the further assumption that $Y$ is the reals with the usual topology. Show that $f$ assumes maximum and minimum values on $X$.
4. Let $f$ be a continuous map of a metric space $X$ into a metric space $Y$.
(a) Show that if $f$ is NOT uniformly continuous on $X$, then for some $\varepsilon>0$ there are sequences $\left\{p_{n}\right\},\left\{q_{n}\right\}$ in $X$ such that $d_{Y}\left(f\left(p_{n}\right), f\left(q_{n}\right)\right)>\varepsilon$ for each $n$ but $d_{X}\left(p_{n}, q_{n}\right) \rightarrow 0$.
(b) Assume that $X$ is compact. Show, using (a), that $f$ is uniformly continuous on $X$.
5. Let $\left\{x_{n}\right\}$ be a sequence of points in $(a, b)$ and let $\left\{c_{n}\right\}$ be a sequence of positive numbers such that $\sum c_{n}$ converges. Define

$$
f(x)=\sum_{n: x_{n}<x} c_{n}, \quad a<x<b,
$$

where the summation is understood as follows: sum over those indices $n$ for which $x_{n}<x$. If there are no points $x_{n}<x$, define the sum to be zero.
(a) Show $f(x-)=f(x)$ for each $x$ in $(a, b)$.
(b) Show $f\left(x_{n}+\right)-f\left(x_{n}-\right)=c_{n}$, for each $n$.
6. Suppose $f$ is continuous on $[0, \infty)$, differentiable on $(0, \infty), f(0)=0$ and $f^{\prime}$ is monotonically increasing. Define $g$ on $(0, \infty)$ by $g(x)=f(x) / x, x>0$. Prove $g$ is monotonically increasing.

