Numerical Linear Algebra Exam: January, 2019 Do 4 (four) problems.

- 1. Let $A = U\Sigma V^*$ be the singular value decomposition of $A \in \mathbb{C}^{m \times n}$ with rank (A) = p and $p \leq n \leq m$.
 - (a) Show $\operatorname{Col}(A) = \operatorname{Span}\{u_1, u_2, \dots, u_p\}$, where u_1, \dots, u_p are the first p columns of U.
 - (b) Show Null $(A^*) =$ Span $\{u_{p+1}, u_{p+2}, \dots, u_m\}.$
 - (c) Show that A^*A is invertible if and only if A is full rank.
- **2.** Let matrix $A \in \mathbb{C}^{m \times n}$, with n < m. Let vector $b \in \mathbb{C}^m$, and let r denote the residual vector r = b Ax.
 - (a) Show that x solves the least-squares problem $\min ||b Ax||_2$ if and only if $r \in \text{Null}(A^*)$.
 - (b) Suppose A is full rank, and describe how to find the least-squares solution using the QR decomposition of A.
- **3.** (a) Show that if $A \in \mathbb{C}^{m \times m}$, A has a Schur decomposition.
 - (b) Show that if $T \in \mathbb{C}^{m \times m}$ is normal and triangular, then T is diagonal.
 - (c) Show that if $A \in \mathbb{C}^{m \times m}$ is normal and λ is an eigenvalue of A, then the geometric multiplicity of λ is equal to the algebraic multiplicity of λ .
- 4. Let $\|\cdot\|$ be a subordinate (induced) matrix norm. If A is $n \times n$ invertible and E is $n \times n$ with $\|A^{-1}\|\|E\| < 1$, then show
 - (a) A + E is nonsinguar
 - (b)

$$||(A+E)^{-1}|| \le \frac{||A^{-1}||}{1-||A^{-1}||||E||}$$

5. Consider the matrix A given by

- (a) Show that A is positive definite.
- (b) What can you say about the location of each of the eigenvalues of A? Your answer should be in the form of an interval or a union of intervals.
- (c) Suppose the eigenvalues of A are all distinct (they are) and satisfy $\lambda_1 > \lambda_2 > \lambda_3 > \lambda_4$. Describe an algorithm that could be assured to converge to λ_4 .