Numerical Linear Algebra Exam: January, 2019
 Do 4 (four) problems.

1. Let $A=U \Sigma V^{*}$ be the singular value decomposition of $A \in \mathbb{C}^{m \times n}$ with $\operatorname{rank}(A)=p$ and $p \leq n \leq m$.
(a) Show $\operatorname{Col}(A)=\operatorname{Span}\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$, where u_{1}, \ldots, u_{p} are the first p columns of U.
(b) Show $\operatorname{Null}\left(A^{*}\right)=\operatorname{Span}\left\{u_{p+1}, u_{p+2}, \ldots, u_{m}\right\}$.
(c) Show that $A^{*} A$ is invertible if and only if A is full rank.
2. Let matrix $A \in \mathbb{C}^{m \times n}$, with $n<m$. Let vector $b \in \mathbb{C}^{m}$, and let r denote the residual vector $r=b-A x$.
(a) Show that x solves the least-squares problem min $\|b-A x\|_{2}$ if and only if $r \in \operatorname{Null}\left(A^{*}\right)$.
(b) Suppose A is full rank, and describe how to find the least-squares solution using the QR decomposition of A.
3. (a) Show that if $A \in \mathbb{C}^{m \times m}, A$ has a Schur decomposition.
(b) Show that if $T \in \mathbb{C}^{m \times m}$ is normal and triangular, then T is diagonal.
(c) Show that if $A \in \mathbb{C}^{m \times m}$ is normal and λ is an eigenvalue of A, then the geometric multiplicity of λ is equal to the algebraic multiplicity of λ.
4. Let $\|\cdot\|$ be a subordinate (induced) matrix norm. If A is $n \times n$ invertible and E is $n \times n$ with $\left\|A^{-1}\right\|\|E\|<1$, then show
(a) $A+E$ is nonsinguar
(b)

$$
\left\|(A+E)^{-1}\right\| \leq \frac{\left\|A^{-1}\right\|}{1-\left\|A^{-1}\right\|\|E\|}
$$

5. Consider the matrix A given by

$$
A=\left(\begin{array}{rrrr}
1 & 1 & 2 & -3 \\
1 & 10 & -1 & 1 \\
2 & -1 & 13 & -2 \\
-3 & 1 & -2 & 25
\end{array}\right)
$$

(a) Show that A is positive definite.
(b) What can you say about the location of each of the eigenvalues of A ? Your answer should be in the form of an interval or a union of intervals.
(c) Suppose the eigenvalues of A are all distinct (they are) and satisfy $\lambda_{1}>\lambda_{2}>\lambda_{3}>\lambda_{4}$. Describe an algorithm that could be assured to converge to λ_{4}.

