Numerical Linear Algebra Exam – August, 2017 Do **4** (four) problems

- 1. Assume that A is Hermitian and all its eigenvalues are distinct and nonzero.
 - (a) Show that each pair of distinct eigenvectors of A are othogonal.
 - (b) If λ is an eigenvalue of A with eigenvector x with $||x||_2 = 1$, then $B = A \lambda x x^*$ has the same eigenvectors as A while B's eigenvalues are the same as those of A except λ is replaced with zero.
- 2. (a) If P is a projector, prove that $\operatorname{null}(P) \cap \operatorname{range}(P) = \emptyset$ and $\operatorname{null}(P) = \operatorname{range}(I P)$.
 - (b) Prove that P is an orthogonal projector if and only if it is Hermitian.
- 3. (a) If both A and U are in $\mathbb{C}^{m,m}$ and U is unitary, prove that $||UA||_F = ||AU||_F = ||AU||_F = ||AU||_F$.
 - (b) If both A and U are in $\mathbb{C}^{m,m}$ and U is unitary, prove that $||UA||_2 = ||AU||_2 = ||A||_2$.
 - (c) Prove that $||A||_2 = (\rho(A^*A))^{1/2} = \sigma_1$, where σ_1 is the largest singular values of A.
- 4. (a) If $A \in \mathbb{C}^{m,n}$ with $m \ge n$, prove that A^*A is invertible if and only if rank(A) = n.
 - (b) Give an explicit formula for $\det(\lambda I ww^*)$ when $\lambda \in \mathbb{C}$, I is the $m \times m$ identity matrix and $w \in \mathbb{C}^m$
- 5. Assume that T is tridiagonal and symmetric with the diagonal entries given by a_j for j = 1, ..., m and the super- and sub-diagonal entries by b_j for j = 1...m 1. Let p_k be the characteristic polynomial of the $k \times k$ matrix in the upper left hand corner of A. Prove that

$$p_k(x) = (a_k - x)p_{k-1}(x) - b_{k-1}^2 p_{k-2}(x).$$