Numerical Linear Algebra Exam - August, 2017

Do 4 (four) problems

1. Assume that A is Hermitian and all its eigenvalues are distinct and nonzero.
(a) Show that each pair of distinct eigenvectors of A are othogonal.
(b) If λ is an eigenvalue of A with eigenvector x with $\|x\|_{2}=1$, then $B=A-\lambda x x^{*}$ has the same eigenvectors as A while $B^{\prime} s$ eigenvalues are the same as those of A except λ is replaced with zero.
2. (a) If P is a projector, prove that null $(P) \cap \operatorname{range}(P)=\emptyset$ and $\operatorname{null}(P)=\operatorname{range}(I-P)$.
(b) Prove that P is an orthogonal projector if and only if it is Hermitian.
3. (a) If both A and U are in $\mathbb{C}^{m, m}$ and U is unitary, prove that $\|U A\|_{F}=\|A U\|_{F}=$ $\|A\|_{F}$.
(b) If both A and U are in $\mathbb{C}^{m, m}$ and U is unitary, prove that $\|U A\|_{2}=\|A U\|_{2}=\|A\|_{2}$.
(c) Prove that $\|A\|_{2}=\left(\rho\left(A^{*} A\right)\right)^{1 / 2}=\sigma_{1}$, where σ_{1} is the largest singular values of A.
4. (a) If $A \in \mathbb{C}^{m, n}$ with $m \geq n$, prove that $A^{*} A$ is invertible if and only if $\operatorname{rank}(A)=n$.
(b) Give an explicit formula for $\operatorname{det}\left(\lambda I-w w^{*}\right)$ when $\lambda \in \mathbb{C}, I$ is the $m \times m$ identity matrix and $w \in \mathbb{C}^{m}$
5. Assume that T is tridiagonal and symmetric wiith the diagonal entries given by a_{j} for $j=1, \ldots, m$ and the super- and sub-diagonal entries by b_{j} for $j=1 \ldots m-1$. Let p_{k} be the characteristic polynomial of the $k \times k$ matrix in the upper left hand corner of A. Prove that

$$
p_{k}(x)=\left(a_{k}-x\right) p_{k-1}(x)-b_{k-1}^{2} p_{k-2}(x) .
$$

