Do 4 (four) problems

1. (a) Given $A \in \mathbb{C}^{m \times n}$ with $m \geq n$, show that $A^{*} A$ is nonsingular if and only if A has full rank.
(b) If $u, v \in \mathbb{C}^{m}$ and $A=u v^{*}$, show that $\|A\|_{2}=\|u\|_{2}\|v\|_{2}$.
2. Assume $S \in \mathbb{C}^{m \times m}$ is skew-Hermitian, so $S^{*}=-S$.
(a) Show that the eigenvalues of S are pure imaginary.
(b) Show that $I-S$ is nonsingular
(c) Show that the matrix $Q=(I-S)^{-1}(I+S)$ is unitary.
3. If $A \in \mathbb{R}^{m, n}$ with $m \geq n, \operatorname{rank}(A)=n$ and $b \in \mathbb{R}^{n}$.
(a) Define the least squares solution to $A x=b$.
(b) Derive the normal equations for the least squares problem.
(c) Prove that the unique solution to the least squares problem is $\left(A^{T} A\right)^{-1} A^{T} b$.
(d) Describe how to solve the least squares problem using the SVD decomposition of A.
4. (a) Prove that every square matrix A has a Schur factorization.
(b) If A is normal (so $A^{*} A=A A^{*}$) show that the triangular matrix in its Schur factorization is diagonal.
5. Assume $A \in \mathbb{C}^{m \times m}$
(a) If A has a collection of m linearly independent eigenvectors, show that A is diagonalizable.
(b) When A is diagonalizable, prove the Cayley-Hamiliton theorem for A, i.e. A satisfies its own characteristic polynomial.
