Numerical Linear Algebra Exam – April, 2017 Do **4** (four) problems

- 1. (a) Given $A \in \mathbb{C}^{m \times n}$ with $m \ge n$, show that A^*A is nonsingular if and only if A has full rank.
 - (b) If $u, v \in \mathbb{C}^m$ and $A = uv^*$, show that $||A||_2 = ||u||_2 ||v||_2$.
- 2. Assume $S \in \mathbb{C}^{m \times m}$ is skew-Hermitian, so $S^* = -S$.
 - (a) Show that the eigenvalues of S are pure imaginary.
 - (b) Show that I S is nonsingular
 - (c) Show that the matrix $Q = (I S)^{-1}(I + S)$ is unitary.
- 3. If $A \in \mathbb{R}^{m,n}$ with $m \ge n$, $\operatorname{rank}(A) = n$ and $b \in \mathbb{R}^n$.
 - (a) Define the least squares solution to Ax = b.
 - (b) Derive the normal equations for the least squares problem.
 - (c) Prove that the unique solution to the least squares problem is $(A^T A)^{-1} A^T b$.
 - (d) Describe how to solve the least squares problem using the SVD decomposition of A.
- 4. (a) Prove that every square matrix A has a Schur factorization.
 - (b) If A is normal (so $A^*A = AA^*$) show that the triangular matrix in its Schur factorization is diagonal.
- 5. Assume $A \in \mathbb{C}^{m \times m}$
 - (a) If A has a collection of m linearly independent eigenvectors, show that A is diagonalizable.
 - (b) When A is diagonalizable, prove the Cayley-Hamiliton theorem for A, i.e. A satisfies its own characteristic polynomial.