Do exactly 4 problems. Work must be presented in a neat and logical fashion in order to receive credit. Do not leave any gaps. When a theorem is used in a proof it must be precisely stated.

- 1. Let $f : [a, b] \to \mathbb{R}$ be a Riemann integrable function and suppose that $\int_a^b f(x) dx > 0$. Prove that there is a nonempty open interval $I \subset [a, b]$ and a number $\delta > 0$ such that $f(x) > \delta$ for all $x \in I$. Does this remain true if f is only assumed to be Lebesgue integrable? Prove, or give a counterexample.
- 2. Let (f_n) be a sequence of continuously differentiable functions on [0, 1]. Prove that if $f'_n \to g$ uniformly on [0, 1], and the sequence $f_n(0)$ converges, then there is a continuously differentiable function f such that $f_n \to f$ uniformly on [0, 1] and f' = g.
- 3. Let f be continuous on [0, a] and suppose that

$$\int_0^a e^{-st} f(t) \, dt = 0$$

for all $s \ge 0$. Prove that f = 0.

- 4. Let (X, \mathcal{M}) be a measurable space and $f_n : X \to \mathbb{R}$ a sequence of measurable functions. Prove that each of the following sets is measurable:
 - a) the set of points $x \in X$ at which $f_n(x)$ is rational for all n
 - b) the set of points $x \in X$ for which the sequence $f_n(x)$ is decreasing
 - c) the set of points $x \in X$ at which the sequence $(f_n(x))$ diverges
- 5. State the Monotone Convergence Theorem and Fatou's theorem, and use the former to prove the latter.