Do exactly 4 problems. Work must be presented in a neat and logical fashion in order to receive credit. Do not leave any gaps. When a theorem is used in a proof it must be precisely stated.

- 1. Let $f_n : [a, b] \to \mathbb{R}$ be a uniformly bounded sequence of Riemann integrable functions. Prove that if $f_n \to f$ uniformly, then f is Riemann integrable.
- 2. Let $f:[0,1] \to \mathbb{R}$ be continuous. Suppose that

$$\int_0^1 f(x) x^{2019k} \, dx = 0$$

for all integers $k \ge 0$. Must f be identically 0? Prove, or give a counterexample.

3. Let $f_n : [0,1] \to \mathbb{R}$ be a sequence of measurable functions and suppose there is a function $g \in L^1[0,1]$ such that $|f_n| \leq g$ for all n. Consider the functions

$$F_n(t) = \int_0^t f_n(x) \, dx.$$

Prove i) each F_n is continuous on [0, 1] and ii) there is a subsequence (F_{n_k}) converging uniformly on [0, 1].

- 4. Let (X, \mathscr{M}) be a measurable space and $f_n : X \to \mathbb{R}$, n = 1, 2, 3, ... a sequence of measurable functions. Prove that each of the following subsets of X is measurable:
 - a) $\{x|f_n(x) > 0 \text{ for infinitely many values of } n\}$
 - b) $\{x \mid \text{the sequence } (f_n(x)) \text{ is eventually monotone} \}$
 - c) $\{x \mid \lim_{n \to \infty} n f_n(x) = 0\}$
- 5. Let $f_1 \ge f_2 \ge f_3 \ge \cdots$ be nonnegative measurable functions on a measure space (X, \mathcal{M}, μ) , and put $f = \lim f_n$. Suppose that $\int f_k d\mu < \infty$ for some k. Prove that

$$\int f \, d\mu = \lim \int f_n \, d\mu.$$

Give a counterexample to show that the conclusion can fail if the finiteness hypothesis is dropped.