Do exactly 4 problems. Work must be presented in a neat and logical fashion in order to receive credit. Do not leave any gaps. When a theorem is used in a proof it must be precisely stated.

1. Let (a_n) and (b_n) be bounded real sequences, with $\lim a_n = a$. Prove that

$$\limsup(a_n + b_n) = a + \limsup b_n$$

2. Let (X, d) be a metric space and $E \subseteq X$ a nonempty subset. Consider the function $d_E: X \to [0, +\infty)$ defined by

$$d_E(x) = \inf_{y \in E} d(x, y)$$

Prove i) d_E is uniformly continuous on X, and ii) describe, with proof, the set of points at which $d_E = 0$.

- 3. Let X be a compact metric space. Let $\{F_{\alpha}\}_{\alpha \in A}$ be a (nonempty) collection of nonempty closed subsets of X, and suppose that $\{F_{\alpha}\}$ is *totally ordered* by inclusion (this means that for every $\alpha, \beta \in A$, either $F_{\alpha} \subseteq F_{\beta}$ or $F_{\beta} \subseteq F_{\alpha}$). Prove that the intersection $\bigcap_{\alpha \in A} F_{\alpha}$ is nonempty.
- 4. Let $\{U_{\alpha}\}_{\alpha \in A}$ be a family of connected subsets of a metric space X. Suppose that $U_{\alpha} \cap U_{\beta} \neq \emptyset$ for each pair $\alpha, \beta \in A$. Prove that $\bigcup_{\alpha \in A} U_{\alpha}$ is connected.
- 5. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function, and suppose that f' is monotone. Must f' be continuous? Prove, or give a counterexample.