PH.D. QUALIFYING EXAM IN COMPLEX ANALYSIS

Give complete proofs and computations. Partial credit will be given where justified.

1) Evaluate the integral
\[\int_{0}^{\infty} \frac{\ln x}{(1 + x^2)^2} \, dx. \]

2) Find the order of each of the following entire functions:
 (a) \(\frac{\sin \sqrt{z}}{\sqrt{z}} \)
 (b) \(\prod_{k=1}^{\infty} \left(1 + \frac{z^k}{k!}\right) \)
 (c) \(\prod_{k=1}^{\infty} \left(1 + \frac{z^k}{k \ln^2 k}\right) \)

3) Let \(G \subseteq \mathbb{C} \) be a region and \(\{f_n\} \subseteq H(G) \) be a sequence of injective functions which converges to \(f \) in \(H(G) \). Prove that either \(f \) is also injective or it is constant on \(G \).

4) Let \(f \) be an analytic function mapping the unit disc \(D \) into itself and having two or more distinct fixed points in \(D \). Show that \(f \) must be the identity function \(f(z) = z \) for all \(z \in D \).

5) Construct the analytic function which map the unit disc \(D \) conformally onto the angular region \(|\arg(z)| < a \), for fixed \(a \in (0, \pi) \), and satisfies \(f(0) = 1 \). With the help of this function, prove that if \(g \) is a function which is analytic in \(D \) and satisfies both \(g(0) = 1 \) and \(|\arg(g(z))| < a \) \((a \in (0, \pi)) \), then \(|g'(0)| \leq 4a/\pi \).

6) Let \(f \) be an entire function of finite order. Prove that if the order is not an integer, then \(f \) must have infinitely many zeros. Does there exist an entire function of infinite order with finitely many zeros? Explain.

7) Let \(n \) be a natural number and \(a \) be a real number such that \(a > e \). Show that the equation \(e^x - ax^n = 0 \) has exactly \(n \) solutions inside the unit disc.

8) Suppose \(f \) is entire and that there exists a bounded sequence \(\{a_k\}_{k \in \mathbb{N}} \) of distinct real numbers such that \(f(a_k) \) is real for every \(k \). Prove that \(f(x) \) is real for all real \(x \).